UTest NVMM

ot

UTest NVM

1B00_0000

1B00_1FFF

B8 KB S32K358, 532K3x4, S32K342,

S32K312, S32K311

1. The address region number is the same as block number for all the blocks except this one. Address region is called UTest

NVM address region in this case.

31.4.1 Feature configuration in virgin device

Encrypted and signed fimware image is always
delivered to user.

Feature Configuration information Status Configurability
OTA functionality Samples are always shipped in the OTA disabled | Disabled Yes
configuration Can be enabled by
application by requesting
to HSE fimmware or Secure
BAF
HSE firmware usage | This flag indicates whether fimmware installation Disabled Yes
feature flag allowed in the device or not. By default, this flag is Can be enabled by
unprogrammed and Secure BAF assumes that programming in the
firmware installation is not allowed. UTEST location. More
details on “UTEST Flag
description” section.
Secure BAF firmware | Samples are always shipped with Secure BAF Programmed No
programmed
HSE Firmware HSE firmware is always programmed by user’ Mot programmed Yes

Can be installed by the
application software.

Image Vector Table

Mo IVT is programmed at any of the IVT locations.

Mot programmed

Yes

Can be programmed by
application software.

SWTO

Application core watchdog SWTO is disabled.

Disabled

Yes

It can be optionally
enabled by BAF if SWT bit
is configured in boot

configuration word.

Boot Sequence Boot sequence is non-secure boot MNon secure boot Yes

i.e. application are booted by Secure BAF without It can be changed to
any authentication. secure boot by
programming the
BOOT_SEQ bitin IVT.

Life Cycle Samples are always delivered in LC=CUST_DEL | Customer Delivery |Yes

It can be changed to
OEM_PROCD and
IN_FIELD by application
through Secure BAF and
HSE firmware.

Application Core All applications cores are in disable state. Disabled. Yes

Single or all application
cores can be enabled at
required address by
programming the required

fields in the IVT.
Clock Source Fast Intemal Reference clock FIRC Yes
FIRC Frequency Value |48 MHz 48 MHz es, application can
configures after Secure
BAF goes in WFL.
Application debug Debug Autherization mode of application cores is | Password based When HSE Firmware
ization mode P d based. It can be changed to challenge | approach Feature flag is disabled,
response mode by programming the configuration debug authorization mode
in UTEST. cannot be changed.
When HSE Firmware
Feature flag is enabled,
debug authorization mode
can be changed to
challenge response mode
by requesting to HSE
firmware.
Application core debug | Debug of application cores iz enabled in customer | Enabled Mo
status delivery lifecycle.
n ° - w =
Start address (hex)
(offset from UTEST End address (hex) Allocated size (bytes) (Description Accessibility |

— o Wm OO R W =0

©® B, BN

P | Sheet1 UTEST Memory Map | Utest DCF Clients | Utest DCF Client Register Bits ¥

UTEST memory usage by Secure BAF

Table 170. UTEST memory location usage by Secure BAF

Start address

End address

Size (bytes)

Description

Programmed by

Write protected

1B00_0000h

1B00_0007h

8

HSE Firmware
Feature Usage
flag. For more
detail, see UTEST
flag description

Application

1B00_0040h

1B00_0047h

Unique Chip
Identifier (UID) 0

NXP

1B00_0050h

1B00_0057h

FXOSC
enablement flag

For more
detail, UTEST
flag description

Application

1B00_0080h

1B00_009Fh

32

Debug
password(CUST_D
B_PSWD_A).

When HSE FW
feature Flag is
disabled, this
location is used

by Secure BAF

to run the debug
authonzation
feature. Secure
BAF copies this
value in application

expected response

register and this
value is used to
derive the HSE
expected response
register. Size of
this register is 16B
and 1B00_0090h
—1B00_00%h

is reserved.

When HSE
Fimware feature
flag is enabled,
password is
programmed by
HSE firmware at
different location.

Password is
scanned by DCM
during Reset only.
Password to be
retained in standby.

Application

1B00_0220h 1B00_022Fh 16 Lifecycle slot NXP Yes
1: CUST_DEL

1B00_0230h 1B00_023Fh 16 Lifecycle slot Secure BAF Yes
2: OEM_PROD

1B00_0240h 1B00_024Fh 16 Lifecycle slot Secure BAF Yes
32 IN_FEILD

1B00_0250h 1B00_025Fh 16 Lifecycle slot Secure BAF Yes
4: Pre-FA

1B00_0260h 1B00_026Fh 16 Lifecycle slot 5: FA | Secure BAF Yes

Debug password(CUST_DB_PSWD_A). AT UL, ,, hsefw HEihash (SHA2-224) over ADKP

Debugging 41t

Table 5: Host debugging capabilities vs. LC

LC state Host debugging
CUST_DEL Host debug open (unrestricted)
OEM_PROD Host debug protected (with ADKP) or permanently
IN_FIELD disabled (see DEBUG_DISABLE)
PRE_FA Host debug protected (with ADKP) or permanently
disabled (see DEBUG_DISABLE)
FA Host debug open
Rm
T::«;:Zz Dabug mx:::“:‘!:;:!h::ﬂlvua and bil configurations e p—
2 2 i
: g 8 §
8 g 2 % E;

CUST_DEL - - - - Open

Open

OEM_PROD Closed

0
1 0 - - Trusted
1 0 - Trusted
1

1 - - Disabled

IN_FIELD Closed

o Trusted

o Trusted

===

1 Disabled
PRE_FA Trusted

Trusted

) - - Opon

4. Disabled: Debug has been explicitly disabled via burning of a fuse in that LC, otherwise behaves as Closed

RepRHLhE

2. R BahifER, Mt 0x4039¢020 iEHL SBAF rA{S 5., 15 4 00050000,

00090400, N SBAF BRAINE %% 0.5.0 0.9.4

2 Console 2! Problems @ Executables [Debug Shell ! Watch registers O Memory Spaces B Real Time Expressions 0 Memory &

Vonitors = X & |0x4039¢020 : 0x4039C020 <Hex> 2 - & New Renderings...
@ 0x4035c020 Address @ - 3 a4-7 8 -B C-F
@ 0Ox1B000DOO 4e30ce20 EECEEEEE) eeo90400 41000000 ©1@09000
& 0x1B000220 4639CE30 0066O0EE 35000080 0GG0GE40 0BCES24D
& 0x0042d060 4639Ce40 00CE0240 ©PPDO240 0EEOOEED ©Eee9ReD
@ Oxfe 4@39CE50 006000ee© FFFFFFBF FF3FFDBF FF3FFDBF

MOTOROLA ; majorVersion, minorVersion, patchVersion =16BIT

14.6.4.1 Secure BAF version number

Secure BAF version is a 64bit field. Secure BAF Version can be read by Application from HSE GPR register
0x4039C020. The Version information is explained in below table.

Table 140. Secure BAF version number HSE GPR (0x4039C020)

Bit # Field Name Description

56 -63 RC_NUMBER Release Candidate Number.

48 - 55 INCREMENTAL_ Incremented when new features are added but compatibility kept.
NUMBER

40 - 47 BASELINE_ Incremented when the compatibility with the previous version is
NUMBER broken.

32-39 RESERVED Reserved

16 - 31 FW_TYPE This field identify the FW type:

0 — Standard generic F\W targeting all customers
1-7 — Reserved

8 >= Custom1, Custom2....(e.g. Custom1 = customer X's project
A, Custom2 = customer Y’s project B)

8-15 SOC_TYPE_ID This field Identifies the SoC family*

5 - 532K344, 532K324 and 532K314 devices

12 - S32K311 and 532K310 devices

13 - S32K312, S$32K342, S32K322 and S32K341 devices

14 — S32K358, S32K348, S32K338, S32K328 S32K336 and
S32K356 devices

15 — S32K396, S32K376, S32K394 and S32K374 devices
16 — S32K388

0-7 RESERVED Reserved

SBAF VERSION

HSE FW 110: s32k3x4_Secure_Baf_0.5.0_0.9.4_pb210708.bin.pink
HSE FW 210: s32k3x4_Secure_Baf 0.5.0 _0.10.0_pb220428.bin.pink
HSE FW 260: s32k3x2_Secure_Baf 0.13.0_0.9.0 pb220502.bin.pink

SBAF_S32K312 0 0 15 0 _ReleaseNotes.pdf

2 Release Details

HSE VERSION

T
typedef struct
{

uintd_t

uintd_t
uintl6_t
uintd_t

uintd_t

uintle_t

majorVersion; [**F¢ gbrief P

This is the HSE Secure-BAF (SBAF) 0.15.0 RTM release for S32K312 for FULL_MEM
configuration. The SBAF release of AB_SWAP configuration is part of the HSE firmware
AB_SWAP pink image. Both releases can he used for production.

It is strongly recommended that user should update the SBAF in their existing samples if
the features provided in this release are important to them.

The SBAF can be updated only in FULL_MEM configuration. In case of AB_SWAP, the
SBAF gets updated as part of the HSE firmware update.

This release was developed and tested using:

* Chip : P32K312NGVPBS
* Mini-Module : XS32K3X2CVB-Q172

f**< @brief For HSE-B, it is used for OTA Config: @ = Full Mem Config; 1 = AB Swap Config.
For other SOC type: Reserved, expected to be @ */

socTypeld; f#%< @brief Identifies the SoC Type ID; same as HSE_PLATFORM from hse_target.h #/

/*%¢ @brief Identifies the FW type:
- @ - Standard FW targeting all customers
- 1 - Premium FW targeting all customers
- 2-7 - Reserved
C Custom2... etc */

- @ - Pre-stabilization releases
- 1 - at first stable interface release, and increased later if breaking changes

minorVersion; /*%¢ @brief Minor revision, bumped on new compatible changes added;

reset to @ on majorVersion bump, if majorVersion>@ */

patchVersion§ S*%¢ @brief Hotfix release (patch version, bug fix releases).<br:

After majorVersion»@, reset to @ on majorVersion or minorVersion bump. */

+ hseAttrFwVersion_t;

HSE FW 110:

HSE FW 210:

HSE FW 260:

s32k3x4_hse_fw_0.5.0_1.1.0_pb211004.bin.pink
s32k3x4_hse_fw_1.5.0_1.1.0_pb211004.bin.pink

s32k3x4_hse_fw_0.5.0_2.1.0_pb220625.bin.pink FULL MEM
s32k3x4_hse_fw_1.5.0_2.1.0_pb220625.bin.pink

s32k3x2_hse_fw_0.13.0_2.6.0_pb221129.bin.pink
s32k3x2_hse_fw_1.13.0_2.6.0_pb221129.bin.pink

HSE_FW_S32K3XX_0 2 1 0

» S32K344
» S32K324
» S32K314

HSE_FW_S32K3XX_0_2_6_0

» S32K312

EEL OTA ENABLE 13 0x1B000280, 4 65766974 6361746f

D Console I Problems @& Executables [Debug Shell 4%Watch registers 0 Memory Spaces B Real Time Exgressions 0 Me

Monitors % % % 0x18000280 : 0x1B000280 <Hex> *1 . & New Renderings...
¢ 0x4035c020 Address @ - 3 4-7 8 - B C-F
0x1B000000 18ee02se LN 6361746F FFFFFFFF FFFFFFFF
¢ (x1B000280 1B@@929@ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
¢ 0x0042d060 1Be@82A@ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
¢ Oxfe 1Be@82B@ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

1RAGAIC A FFFFFFFF FFFFFFFF FFFFFFFF FFFEFFFFF

uint8_t DCMOTAR = Ou; //0 -- low address, 1 -- high address
uint8_t DCMOTAA = 0u; //0 -- inactive, 1 -- active

OTA enable
[NVMparameters | Block | Address | Length |
OTA_INDICATOR_1 Code flash 005F_FBF8h 64-bit
OTA_INDICATOR_2 Code flash 007F_FBF8h 64-bit
OTA_ENABLE UTest (OTP) 1B00_0160h 64-bit

WHATLE EAR JASH) SBAF J ¥ 2225 1 0 2 J5) AB SWAP [£f.pdf
15ZEY OTA ENABLE b1 0x1B000280, 4 65766974 6361746f

2 Console [Problems @ Executables [Debug Shell %% Watch registers O Memory Spaces &3 Real Time Expressions 0

vonitors % % % |0x1B000280 : 0x1BOD0280 <Hex> &3\ 4 New Renderings..
@ 0x4035c020 Address @ - 3 4-7 g8 -8B C-F
¢ 0x1B0O00000 18000280 NERLELY 6361746F FFFFFFFF FFFFFFI
@ 0x1B000280 1B@0B29@ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFI
¢ 0x0042d060 1Be@@2A@ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFI
® Oxfe 1Be@O2B8 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFI

Below figure shows UTEST memory counter value when AB SWAP FW is installed in the

device.
; - n—
'SD:0x1B000280 | | #Find. | Modity.. Long v
address (] 1 8

SD:1B0ABAZ26A [» 74697665 6F 746163 FFFFFFFF FFFFFFF]
SD:1B000A290 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFF]
Figure 70. UTEST memory Layout when AB swap HSE FW installed

FW install is said to be successful when HSE FW init bit O at location Ox4038C107 is set

to 1 as shown below. (vu 0)

[3

it Bedata dump Dx4D38CT07++0x1 o8 e
address 0 4 8 C 0123456789A8CDEF
SO74038C100 VI TITTTT 7

Figure 32, HSE FW install bit

Mu map

MU_0

MU_0O_MUB | 16 0x4038C000

MU_1

MU_1_MUB | 16 0x40390000

HSE status

FSR 0x4038C000+0x104

Table 8: HSE global status bits in FSR

Bit # | Description

ky| RFU

30 HSE_STATUS _PUBLISH_NVM_KEYSTORE_RAM_TO_FLASH: signals the application to publish
the SYS-IMG to Secure NVM; the host must trigger the service
HSE_SRV_ID_PUBLISH_NVM_KEYSTORE_RAM_TO_FLASH

29 HSE_STATUS_FW_UPDATE_IN_PROGRESS; when set to 1, indicates that firmware update is in
progress.

28 HSE_STATUS_OEM_SUPER_USER; when set to 1, indicates that SU rights are granted to
OWNER_OEM

27 HSE_STATUS_CUST_SUPER_USER; when set to 1, indicates that SU rights are granted to
OWNER_CUST

26 HSE_STATUS_BOOT_OK; set to 1 when all the secure boot conditions (pre-boot phase) defined in
the HSE successfully pass

25 HSE_STATUS_INSTALL_OK; set to 1 once the key catalogs have been successfully formatted;
when cleared to 0, indicates to the host that the key catalogs must be formatted

24 HSE_STATUS_INIT_OQK, setto 1 when the HSE initialization is completed;, when cleared to 0, no
service request can be made to the HSE (MU disabled)

23 HSE_STATUS_HSE_DEBUGGER_ACTIVE; set to 1 when a HSE debug session is active

22 HSE_STATUS_HOST_DEBUGGER_ACTIVE; set to 1 when a host debug session is active

21 HSE_STATUS_RNG_INIT_OK; set to 1 when the RNG initialization is complete; when cleared to 0,
any services using random number is unavailable to the host

20 HSE_SHE_STATUS_SECURE_BOOT_OK; set to 1 when SMR #0 successfully verified against
BOOT_MAC

19 HSE_SHE_STATUS_SECURE_BOOT_FINISHED; set to 1 when SMR #0 was not successfully
verified

18 HSE_SHE_STATUS_SECURE_BOOT_INIT; set to 1 when SMR #0 has been installed and
authenticated with BOOT_MAC_KEY

17 HSE_SHE_STATUS_SECURE_BOOT, set to 1 when SMR #0 has been installed and BOOT_SEQ
equals 1

16 RFU

15 Set to 1 when service channel #15 execution is in progress
14 Set to 1 when service channel #14 execution is in progress
2 Set to 1 when service channel #2 execution is in progress
1 Set to 1 when service channel #1 execution is in progress
0 Set to 1 when service channel #0 execution is in progress
9
10 &dcm_otaa=(Data.long(SD:0x402ac000)>>10) &0x1
11 &value=Data.byte(SD:0x4038C107)
12 &ivt_header=Data.long{SD:Ox00400000)
13
14 Var.Assign \init status byte=&value
15 Var.Assign \init status byte=(\init status byte) &0xl
16
17 VAR.IF (0xl == \init status byte)
18 (
19 var.if (0xl1l == &dcm otaa)
20 DIALOG.MESSAGE "AB SWAP HSE FW installed."
21 else
22 DIALOG.MESSAGE "Full HSE FW installed."™
23 iprint hse firmware wversion only when ivt is present
24 VAR.IF (0x5AAS55AA5 == &ivt header)
25 (
26 Var.AddWatch %Hex gHseFwVersion
27)
28)
29 VAR.IF (0x0 == \init status byte)
30 |
31 var.if (0Oxl == &dcm otaa)
32 DIALOG.MESSAGE "AB SWAP Device.HSE FW not installed."
33 else
34 DIALOG.MESSAGE "Full Mem Device.HSE FW not installed."
S)
36 data.dump 0x403BCl07++0x1

=

NOTE - HSE GPR

v" The HSE GPR(0x4039C028) provides some information about the internal working status of the HSE. In case of some
abnormal conditions that prevent the HSE from working or the firmware is erased, the user should immediately check
the HSE GPR value and save it for further analysis.

14.2.6.2 HSE GPR Register 3

Secure BAF updates status bits on HSE GPR Register 3 (0x4039C028) as explained in below table.
Table 136: Status Bits on HSE GPR Register 3 (0x4039C028)

Bit# Description

31... Reserved

Application cores booted in Recovery mode by SBAF.

4 No HSE Firmware is present in Device due to Erase performed by SBAF
Handshake logic. This bit resets on presence of valid HSE Firmware.

3 HSE Firmware from Data flash area is erased by SBAF Handshake logic in
current reset cycle.

2 HSE Firmware from code flash area is erased by SBAF Handshake logic in
current reset cycle.

1 MU interface is enabled for installation of HSE Firmware.

0 HSE FW is present and SBAF Booted HSE Firmware

97 EXTERNAL USE 6 Indicates that SBAF performs the debug authentication. x

///S32K2TV_S32K3xx_Training_Section_1-8_rev1.0.pdf

OTA

Ota Demo code

C:\NXP\SW32K3_OTADEMO_0.8.0\S32K344_HSE_OTA

S32K3XX_CryptoDriver_and OTA_ AdvancedTraining.pdf

Memory map

OTA UPDATE

Reset

ACTIVE REGION ACTIVE REGION ACTIVE REGION

0x0040_0000h_

OTA Demo OTA Demo OTA Update
Application Application Region
OTA Update OTA OTA Update

Application Update Anblication

0x0050_0000h _

0x0080_0000h _.

OTA Update OTA Demo

Region Application

0x0070_0000h,
OTA Update

Application

PASSIVE REGION PASSIVE REGION PASSIVE REGION

DEVICE FLASH DEVICE FLASH DEVICE FLASH

Flash

Erasing of selected sector or block erase
8kB sectors in every block

Boot

31.4 IVT (NON secure)

IVT Image Vector Table.
lable 145. IVT
Address Size in | Content Comments
offset bytes
00h 4 IVT marker It is a magic number which marks the starting of Image Vector Table
location. Its value must be 5AA5_5AASBh.
04h 4 Boot Configuration | Configuration word that allows the user to select the various configuration in
Word which device can be booted. See Boot configuration word for details.
08h 4 Reserved —
0Ch 4 CM7_0 application | Boot address of CM7_0 application in code flash area. It must honor core
start address VTOR alignment restrictions. This field will be used by SBAF when
BOOT_SEQ bit is 0.
10h 4 Reserved —
14h 4 CM7_1 application | Boot address of the CM7_1 application code in flash memory. It must honor
start address core VTOR alignment restrictions. This field will be used by SBAF only when
BOOT_SEQ bit is 0.
*This will be ignored if Lockstep configuration is enabled.
18h 8 Reserved —
20h 4 Reserved —
24h 4 Address of LC Address of Configuration word that allows User to Advance LC. Details are
configuration mentioned below.
28h 4 Reserved —
2Ch 4 Reserved —
30h 192 Reserved —
FOh 16 Reserved —

Table 175. Boot configuration register

31 30 29 28 27 |26 25 24 23 22 |21 20 19 18 17 16
R
w
15 14 13 12 11 |10 9 8 7 6 |5 4 3 2 1 0
R = 0 o m w w
zZ |4 ¥ 13 |28 |=
}_l x | < < <
W - Z b4 b4
= 73] [o} | i w
%) L o) o - o
o (74 @ | | |
o P~ M~ P~
< = = =
(] [&] Q
W

IVT secure boot

Table 109: IVT structure

Offset Byte size | Category Description Value [Value type
0x00 4 Tag IVT header tag Magic number (0x5AA55AA5)
0x04 4 Configuration | BCW Bit field
0x08 4 Reserved
0x0C 4 Executable Apps for BOOT_TARGET bit #0 Pointer
0x10 4 Reserved
0x14 4 Executable Apps for BOOT _TARGET bit #1 Pointer [
Offset Evte sizL Category Description Value / Value e
0x18 4 Reserved
0x1C 4 Executable Apps for BOOT_TARGET bit #2 Pointer 112
0x20 4 Configuration | CFG: XRDC configuration Pointer
0x24 4 Configuration | LCW Pointerl]
0x28 4 Reserved
0x2C 4 Executable FW-IMG Pointer’]
0x30 4 Executable AppBL Pointer
0x34 12 Reserved
0x40 4 Executable Start Address of Application Core | Pointer
for Secure Recovery mode.

Ox44 4 Length Length of Recovery Application 32 bits data
0x48 168 Reserved
0OxFO 16 Tag Authentication tag (GMAC) Byte array
Table 110: BCW bit mapping

Bit # Description

31 RFU

30 RFU

6 DISABLE_SECURE_RECOVERY_MODE

5 SWTO_ENABLE

4 PLL_ENABLEME

3 BOOT_SEQ

2 BOOT_TARGET(CM7_2 ENABLE) FI®

1 BOOT TARGET(CM7 1 ENABLE)¥!

0 BOOT_TARGET (CM7_0_ENABLE)

[MFXOSC enablement flag must be enabled in UTEST area as described in [REF02].
IPLL is configured only when BOOT_SEQ==1

Table 114: PLL Configuration in HSE Firmware

Device Options Available
S32K312 Option B

S32K342 Option A and Option B
S32K344 Option A and Option B
S32K358 Option A+ and Option B
S32K396 Option A+ and Option B
S32K311 Option B

Table 115: Clock Frequencies for various clocking options in S32K3xx devices (except S32K3X6)

Clock HSE_CLK CORE_CLK
Option A 80MHz 160MHz
Option B 120MHz 120MHz
Option A+ (only in S32K358 120MHz 240MHz
and its phantoms)

Only Option A+ is available in S32K3X8 family.

Table 116: Clock Frequencies for various clocking options in S32K3X6 family of devices

Clock HSE_CLK CM7_CORE_CLK
Option A+ 80MHz 320MHz
Option B 120MHz 240MHz
Configuration | UTEST Size (in Description
Name Location bytes)
HSE Firmware | O0x1B000000 | 8 bytes Programming this location enables the security in the
Usage feature device. This flag must be programmed before the HSE
flag firmware installation can be performed. This location can
be programmed by any value directly by application in
CUST_DEL lifecycle only.
Reserved 0x1B000048 | 8 bytes Used by HSE. Must not be programmed by application.
FXOSC 0x1B000050 | 8 bytes Oscillator configuration values in case PLL enabled by
configuration HSE firmware during secure boot. Refer to “Boot
Chapter” in SOC RM for more details.
Partial A/B 0x1B000058 | 8 bytes Only applicable for $32K3x8 devices. Programming this
swap location with a value “OxXDABADABADABADABA”
configures the device for partial A/B swap mode when
device is converted to A/B swap configuration. For more
details refer to “HSE firmware Installation” or “HSE
firmware update” section. Note that S32K3x6 devices
are always configured in Partial A/B swap configuration
instead of Normal A/B swap configuration.
JDC clock 0x1B000060 | 8 bytes Programming this location disables the JDC clock. This
disable helps to save the power consumption of the device.

When this feature is enabled, debug authorization is only
performed on SDAP interface not on JDC. This feature is
supported only for S32K3x6, S32K3x8 and S32K3x1
device family.

HSE FW 0.2.1.0 update

- Changes
- A random vector is added to IVT, AppBL and recovery images

- A random vector is returned by the HSE service that computes a GMAC over IVT, AppBL and

recovery images
- The XRDC configuration helper is removed

- Motivation

- Improved authentication scheme over IVT, AppBL and recovery images
- Faster boot time by discarding the XRDC configuration

NEW SYSTEM IMAGE STRUCTURES

[ofiset | AppBL image (content)

| offset | IVT image (content) 0x00 4-byte AppBL header tag

0x00 4-byte IVT header tag
0x0C Size (N bytes)

0x20 Pointer RESERVED m
N+0x40 12-byte random vector (IV1) w

- _ 3 N +0x4C 16-byte authentication tag =
figa (0xFO bytes) < 0x30 Pointer to AppBL GMAC (img1. IV1, ADKP-extended)

0x40 Pointer to Recovery image

0x44 Recovery image size (M bytes)

| OoxE4 12-byte random vector (V@) m m Recovery image (content)

0xFO 16-byte authentication tag = 0x00 First executable byte
GMAC (imga. IV8. ADKP-extended) B
M 12-byte random vector (1V2)

M+0x0C 16-byte authentication tag =
GMAC (img2, IV2, ADKP-extended)

imgil (0x40 + N bytes)

img2 (0x0C + M bytes)

NEW HSE SERVICE TO CALCULATE AUTHENTICATION TAGS OVER SYSTEM IMAGES

Service structure parameters

T S Pointer to first byte of IVT, AppBL or Recovery image
{

HOST_ADDR pInImage;

uint32_t inTaglength; =—— gjze of the image to process

HOST_ADDR pOutTagAddr;
} hseBootDataImageSignSrv_t; ‘K.
Pointer to a buffer of minimum 28 bytes

After successful execution, the service initializes the

buffer with two concatenated arrays as follows:
| - A 12-byte random vector @ |

- A16-byte authentication tag

Byte offset in memory 0x00 0x0B 0x0C 0x1B
Content First byte of Last byte of First byte of Last byte of
random vector random vector | auth. tag auth. tag

Table 112: XRDC configuration structure

Offset Byte size | Category Description Value [Value type
001 4 Tag XRDC configuration header tag Magic number (0xCC5577CC)
Dx04 4 Configuration | MDA_W0_0_DFMTO Byte array
00 4 Configuration | MDA_'W0_1_DFMTO Byte array
0x0C 4 Configuration | MDA_'W0_2_DFMT1 Byte array
0x10 4 Configuration | MDA_W0_4 _DFMT1

O0x14 4 Configuration | MDA_W0_5_DFMT1 Byte array
0x18 16 Reserved

0x20 4 Configuration | PDAC_W0_154

0x24 4 Configuration | PDAC_W1_154

0x28 4 Configuration | PDAC_W0_15i

0x2C 4 Configuration | PDAC_W1_15i

0x30 4 Configuration | PDAC_W0_16:

0x34 4 Configuration | PDAC_W1_163

0x38 4 Configuration | PDAC W0 175

0x3C 4 Configuration | PDAC_W1_175

0x40 4 Configuration | PDAC_W0_180

Ox44 4 Configuration | PDAC_W1_180

Ox48 4 Configuration | PDAC W0 181

0x4C 4 Configuration | PDAC_W1_181

0x50 4 Configuration | PDAC_W0_182

0x54 4 Configuration | PDAC_W1_182

0x58 4 Configuration | PDAC W0 183

0x5C 4 Configuration | PDAC_W1_183

0x60 4 Configuration | PDAC_W0_184

0xE4 4 Configuration | PDAC_W1_184

| OxE8 4 Configuration | PDAC W i}

OxBC 4 Configuration | PDAC_W i}

0x70 4 Configuration | PDAC_W 7

0x74 4 Configuration | PDAC_W 7

0x78 4 Configuration | PDAC_W0_223

0x7C 4 Configuration | PDAC_W1_223

| 0x80 4 Configuration | PDAC_W0_225

Ox&4 4 Configuration | PDAC_W1_235

0xE8 4 Configuration | PDAC_W0_280

0x8C 4 Configuration | PDAC_W1_280

0x80 96 Reserved

0xFO 16 Tag Authentication tag (GMAC) Byte array

LCW is a 32-bit value that specifies the LC state advancement:

LCW = OxDADADADA advances LC to OEM_PROD
LCW = OxBABABABA advances LC to IN_FIELD

Table 114: AppBL structure

Table 114: AppBL structure

Offset Bﬂe size | Category DescriEion Value | Value type
0x00 1 Tag AppBL header tag Magic number (0xD5)
0x01 2 Reserved
0x03 1 Tag AppBL version Magic number (0xE0)
0xD4 4 Reserved
0x08 4 Configuration | Start address (in Flash) Pointer

x0C 4 Configuration | AppBL size (N) 32-bit in

x10 1 Configuration | Core identifier (see Table 120) Walue

x14 4T Reserved

x40 N E: AppBL content (in plain) Executable
N +0x40 | 16 Tag Authentication tag (GMAC) Byte amray

[As defined in offset 0x0C.

Boot flow

31.5 Boot Flow

31.5.1 High level boot flow

Reset
HSE_RB CPU
Nonsecure boot System
initializati LC advancement
initialization (VAT o] Advance LC |—| Issue reset
Code flash memory
tected
Ce(fE) Parse IVT [—
.| Application S,lm Stop HSE_B
Standby exit Standby oot —* application core (WFD)
boot core
Application code flash memory area
Standby Application
boot VT _ image
. location (for example,
image customer IVT)

Figure 135. High level boot flow

31.7 Standby boot

There are two types of boot mode on exit from standby.

. Fast standby mode
[J

Normal boot on exit from standby

In Fast standby mode Secure BAF boots CM7_0 and halts the HSE core. The flow of standby boot is explained below:

MC_ME_MODE_

Standby Boot Flow

Mormal Boot Flow

tatus[Pr

STANDBY EXIT

DCMRWFS(D] for StandBy Boat
Caonfiguration

FAST STANDBY EXIT

Release FIRC Divider for
Application Care
Read App Core reset register
DCMRWFS[31:1]

MC_ME_CADDR_CM7_D = Core
Reset Address for standby Exit

Enable CM7_0

Figure 130. Standby boot flow

NORMAL STANDBY EXIT
|

Continue with Secure BAF
boot Flow

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*

S$32K3_RTD_Training_Startup_Linker_File_and_Customization.pdf

Boot flow diagram in BAF

BAF Boot Assist Firmware) is the first codes to run on HSE B secure core after
reset, it does necessary system initialization, searches and parses the IVT Image
Vector Table), finally stop HSE B, enable SWT and start the application core:

__COREO_VTOR = __interrupts_rom_start;

Demo SLFrfE A, map

.flash 0x00400000 0x2253c

*(.boot_header)

.boot_header 0x00400000 0x28 ./Project_Settings/Startup Code/startup_cm7.o
0x00401000 . = ALIGN (0x1000)

fill 0x00400028 0xfd8
0x00401000 _ text_start = .
0x00401000 __interrupts_rom start =

*(.intc_vector)

.intc_vector 0x00401000 0x380 ./Project_Settings/Startup Code/Vector Table.o
0x00401000 VTABLE
0x00401380 . = ALIGN (0x4)
0x00401380 __interrupts_rom end =

*(.core_loop)

.core_loop 0x00401380 Oxc ./Project_Settings/Startup_Code/startup _cm7.o0
0x00401380 _core_loop

. section " boat_header”,sx"

IVT(Image Vector Table) Details o o

:::: ECW_ u"cn_nim '

- The IVT location can be the start address(256 bytes) of any available -lese .
P/D-Flash partition blocks. 5 possible locations for $32K344 +long OF

\DOR

Jlang @
« IVT is placed into section “.boot_header” in RTD based project et
long @ 7* Raarued °

(CM_1_ENABLE << OM7_1_ENABLE_SHIFT) /* Boot configuration word

© wnanm
Table 155, IVT field details \ ™)
[
Address | size in | Gontent Details —
offset bytes
0th 4 WT marker Magic numbar that marks tha starting of the 1T location. s valua must be frr e
SAAS_SAASH —
1 i
o4 4 Bool configuration | Configueation word that allows you o select Ihe various configuralion oplians L e
word avallable o boot the chip. See Boot configuration word for detalls.
o " - Comm | ol
och a Cortex7_0 ool address of the Cortax-M7_0 apgiicalion care i the code flash memory
application core starl | area, ft must honor cora VTOR alignment restrictions. SBAF uses this field
address ‘when the BOOT_SEQ field in Boot configuration word is 0.
10n 4 Reserved — e —
14h 4 Cortex-W7_1 Bool address of the Corlax-M?_1 application cors in flash memory. It must e
application core start | honor cor VTOR alignment restrictions. SBAF wsss this fild only when the
addiess BOOT_SEQ feld in Boot configuiation word is 0. o
This field is igmored il lockstep configuration is enabled. i [
18h B Rasorvod -
1 1 1€ o et M—
20h 4 Reserved -—
2ah a LG configuration Configuration word atdress that allows you 1o advance the chig's LC 1o he o am
address next stage. See Address LG configuration word for detals i
=
28h 4 Reserved - —
2ch 4 Reserved — -
e
a0k 142 Reserved -
Fon 16 Reserved - ‘ '
fom—
4 CONFIDENTIAL AND PROPRIETARY e 4\
P

SecureBoot

https://www?2.renesas.cn/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-

and-soc-r-car-achieve-root-trust-1

AB SWAP CASE

AN744511-Secure Boot Application note v0.1.1.0(1.1).pdf

7.3. Implement secure boot

To implement secure boot on the OTA enabled device, the users need to know that the
SMR table is uniquely stored in the S32K3 HSE secure NVM, and the area protected by

each SMR and its auth-tag will also point to a unique address.

Therefore, it is recommended to store the auth-tag in the same fixed address regardless of
the active or passive partition, otherwise you need to reinstall the SMR to avoid secure boot

failure.

After Dowmload cemo
QrOaran socs

Copy Clgand App code to
passive binck

Inctall SMR: and CR, write
aulh teg of App w2 on

Perfarm AB swap,
After umctional rasat,

passive partbion Run Cfg_v2
Oxd00000 Dxa00000 0+400000 Dy
T W T [

running BOOT SEQ-0 | @ BOOT SEQ-0 @ B00T_SE0-0 |z BOOTSEO-0 | @

2 _ 2 b 2

= running - x -

Cig_v1 =) —_— Cfg_v1 2] running Cfg_v1 e Cfg_v1]
P Lt I oo, | e e, | -

VT backup VT_backup T_backup

AuthTag 1 g AuthTag «1 g AuthTag_v1 o AutiTag w1 @

z &

% = 3 B
= | ossnanm] = | oesoaom = ovnam

HSE_IMG AR_SWAP HSE_IMG AR SWAP HSE_IMG AB_SWAP HSE_IMG AB_SWap
___________ DuSFRFFF S DuEFFFFF ____________MFFFFF S ——l
03500000 000000 3ECCO00 0:900000
T T T

o BOOT_SEQ -0 =1 BOOT SEQ-0 =] running BOOT_SEQ-0 @

= =

e Cfg v2 e Cfg_v2 o Cfg_v2 I8
Passive D000 passive| [[2 0x500000

WT_backup WT_backup IVT_packup

fur) AuthTag_v2 @ o] @

= = k=3 o

g = = 5
“ | owomm “ | wemoco = | ownam “ | ousnacen

HSE_IMG AB_SWAP HSE_IMG AB_SWAF HSE_IMG AB_SWAP

OWIFFFFF CTFFFFF OSTFFFFE D:SFFFFF

https://www2.renesas.cn/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-car-achieve-root-trust-1
https://www2.renesas.cn/us/en/blogs/introduction-about-secure-boot-automotive-mcu-rh850-and-soc-r-car-achieve-root-trust-1

The SMR and CR already After the authtags on both After swap and resat,
Ingtalled , write auth tag of sices are writen, modify the run App_sl
App_v1 onh passive partiion BOOT_SEQin e VT Lo
eriable ssoure boat flow
D0uE00000 OxG0000 Ched00000
T
BOOT_SEQ -0 o o o
[=) o =]
& 2 g
Cig_v1 = Cfg_v1 o Cfg_wv1 o
Passive — 0700000 Passive — 0700000 Active | Q=500
m o running m
g 2 2
9 ke =
- | ooa = | osspem
HSE_IMG AH_SWAP A HSE_IMG AE_SIMAP Drbanm HSE_IMG AB_SWAP
—— e e —— — DIFFFFE 047FFFFF DSFFFFF
0400000 04400000 000000
VT
BOOT SEQ -0 o
g
running B
Cig_v2 g running
Active - 0a500000 0500000 Passive | 0x700000
I¥T_backup
[a)
o
2
=3
“ | os504000 05 04000 047 D00
HSE_IMG AH_SWAP HSE_IMG AB_SWMAP HSE_IMG AB_SWAP
OxSFFFFF Cw5FFFFF 07 FFFFF

Figure 23. lllustrating secure boot configuration on AB swap device

S32K344 SecureBootCfgABSwap_Example_1
00_341 FWO0110

CfgABSwap_Example_100_341_FW0110 O
type filter text Settings =
:F:Z"“ © & Cross Settings [_] Do not search system directories (-nostdinc)
v f::IC+ir; ild & Target Processor [Preprocess only (-E)
’ B ild\u.l' riabl ~ % Standard $32D5 € Compiler Defined symbols (-D) a8 s
!
E:vimn?—n:nl & Dialect D HE ENABLE
Logain = Preprocessor I CACHE_ENABLE
. e 2 Includes ENABLE_FPU
ettings & Optimization GCC
Tool Chain Ec . . S32K3XX
& Debugging
C/C++ General 5 Warnings 532K344

EmbSys Registe
Project Natures

CPU $32K344
SECURE_BOOT CFG
HSE_S32K3XX OTA_ENABLE

& Miscellaneous
- ~ ® Standard $32D5 C Linker
Project Referenc

& General
Run/Debug Set! 8 Librarioe

App

Properties for S32K344 SecureBootAppABSwap_Example 100 341 FW0110

type filter text

> Resource
Builders
v C/C++ Build
Build Variabl
Environment
Logging
Settings
Tool Chain Ec
» C/C++ General
EmbSys Registe
Project Natures
Project Referenc
Run/Debug Sett
$32 Configuratic
SDKs
Task Tags
> Validation

HSE

Settings

Configuration: Debug FLASH [Active]

® Tool Settings » Build Steps

& Cross Settings
& Target Processor
v ® Standard S32DS C Compiler
& Dialect
= Preprocessor
& Includes
& Optimization
& Debugging
& Warnings
& Miscellaneous
v % Standard S32DS C Linker
& General

~ Manage Configurat

Build Artifact & Binary Parsers @ Error Parsers

["] Do not search system directories (-nostdinc)
[Preprocess only (-E)
Defined symbols (-D) a8 8
SECURE_BOOT_APP
HSE_S32K3XX_OTA ENABLE
| CACHE_ENABLE
ENABLE_FPU
GCC
S32K3XX
$32K344
CPU_S32K344

Terms Description

Application Binary image containing the user application code. This is stored in plain
Image format and optionally signed if secure boot is enabled.
HSE FW HSE firmware code: It provides cryptographic security services for the

entire platform.
HSE FW image delivered is encrypted and signed (see HSE FW Pink image

definitions).

HSE FW Pink HSE FW image delivered by NXP. This is encrypted and authenticated with
image keys known by NXP. Authentication (signature generation) is done with an

asymmetric algorithm.

HSE FW Image | The first byte of an image header, also known as marker.
header tag OxDA — Full Mem HSE firmware

0xDB — AB SWAP HSE Firmware

0xDC — Encrypted Secure-BAF Image

IVT image First 256 bytes of data read by HSE firmware after reset.

Contains some attributes configured by secure BAF and references to the

other images used by secure BAF/HSE FW at boot time.

How do | install HSE FW on a virgin device without secure boot?

Firmware feature flag must be enabled before installing the firmware. HSE FW can be
installed in the system using three methods:

? Method 1: Program the encrypted image of HSE FW at start location of code flash
area i.e. 0x00400000 and give a reset. SBAF installs the HSE FW after reset.

? e Method 2: Program the address encrypted image of HSE FW in IVT and program
the encrypted HSE FW image at the provided address. After programming, provide a
reset.

? e Method 3: Installing the HSE FW through MU interface. Refer to HSE FW
reference manual for more details. The advantage of this approach is that user doesn’t
need to program the encrypted image in flash. It can be saved in RAM also.

6.4. HSE FW Update

HSE-B Firmware Reference Manual

RM559614-HSE-B Firmware Reference Manual -V1.2(1.4).pdf

3.2.4 Host system images

The host system images required to operate in a device with embedded Flash are:

- The Image Vector Table, hereafter referred to as IVT.

- Device-specific configuration data / commands, hereafter referred to as CFG.

- Various applications images (executable, data, etc.) referred to as Apps.

- An (optional) authenticated application image, hereafter referred to as AppBL that can run in the host
in lieu of the Apps and after the HSE has verified its authenticity.

AppBL — & smriilE f5 1817 -

3.3.7 HSE images

3.3.7 HSE images

3.3.7.1 Overview
The HSE images are:

- The HSE firmware executable, here after referred to as FW-IMG

- The HSE system image that contains public and private (secret) keys, monotonic counters and
configuration data (aka HSE system afttributes), hereafter referred to as SYS-IMG.

The location, access and update policies that apply to each HSE image depend on the type of host where the
HSE integrates.

The HSE_B subsystems have all their images stored in the secure NVM mapping to the embedded Flash:

- FW-IMG is stored in the HSE code Flash area
- FW-IMG backup is stored in the HSE data flash area

- SYS-IMG is stored in the HSE data Flash area
The HSE images are read-out and updated exclusively by the HSE.

SYS IMAGE BREAKUP
DataType ___[Description _________[Size

Monotonic Counter(8K) Monotonic Counter This data type stores the 16 counters of 64 bits 8 KB
in NVM memory.
Monotonic Counter and Once the previous sector of monotonic counter 8 KB
Monotonic Counter and config data Scratchpad gets full, the updated values of all counters are

shifted to scratchpad sector and previous
sector becomes the scratchpad. This sector will

Config data Scratchpad(
8K
) be used for storing the new version of config

HSE Config Data(8K) data also.
HSE Config Data This data type stores the SMR tables, Core 8KB
reset table, NVM attributes, User ECC curves
Key Store The sector stores all type of user keys which 8KB
Key Store (8K) includes symmetric and asymmetric of all key
sizes
Key Store Scratchpad Key Data Scratchpad This sector acts as passive sector for updating 8KB
Sector(8K) Sector(8K) the key and config data. New key file is first

saved in this sector and after successful
programming this sector becomes the active
sector

Total Size 40KB

3.3.8 Life cycle (LC)

Figure 3: HSE installation / configuration states vs. LC states

LC == CUST_DEL
HSE firmware not installed

installation

LC == CUST_DEL
HSE firmware not configured

configuration (partial)

A

LC == OEM_PROD

fi i lat
HSE firmware partially configured configuration (complete)

configuration {complete)

prepare for

! - r
failure analysis

LC ==IN_FIELD
HSE firmware fully configured

prepare for failure analysis

h

LC == PRE_FA
HSE firmware fully configurad

v failure analysis

LC ==FA
HSE firmware not operating

Table 4: HSE Firmware capabilities vs. LC

LC state HSE firmware capabilities

CUST_DEL HSE firmware ready for installation and configuration.

OEM_PROD HSE firmware ready for additional configuration; no restrictions except those implicitly
implied by the security policies.

IN_FIELD Key management capabmties (import, export, etc.) are restricted (most secure state).

PRE_FA HSE firmware fully configured. It is similar to IN_FIELD.

FA HSE firmware not operating.

Debug

Table 5: Host debugging capabilities vs. LC

LC state Host debugging

CUST_DEL Host debug open (unrestricted)

OEM_PROD Host debug protected (with ADKP) or permanently

IN_FIELD disabled (see DEBUG_DISABLE)

PRE_FA Host debug protected (with ADKP) or permanently
disabled (see DEBUG_DISABLE)

FA Host debug open

3.6.3.3 Host debug permanently disabled

The host debug can be permanently disabled (i.e., closed) in LC states OEM_PROD and IN_FIELD by
programming the DCF records in the UTEST area. Refer to [REF02] more details.

Life cycle #E5k:
1. A,
2. i#jd Set HSE system attributes 55

DEVICE’S LIFE CYCLE AND RELATED SECURITY STATE

DEVICE’S LIFE CYCLE AND RELATED SECURITY STATE

Life Cycle One-way (=] (=)
Transition Control rNx_ r_\ r-; N:x_,p rNx_
Device Life Cycle MCU_PROD CUST_DEL OEM_PROD IN_FIELD ERERED FA
Intended Use Configuration Usage Failure Analysis

Key Provisioning Device-specific Tier1’s keys OEM'’s keys Restricted (Protected) Restricted Keys /A
(Protected)
Key Management
HSE Debug Closed (protected) Closed -
protected
protected

Closed (Protected)

Closed (Protected)

Most Secure State

Automotive Security From Standards to Implementation.pdf

I FIGURE 10. Security Level Increases as Product is Developed

Field
Return
Vehicle
Production
Application
Development
Out of
Fab

Security Level

v

Development Lifecycle Over Time

3.4 HSE subsystem software components

There are two software components that operate the HSE subsystem:
- SBAF

- HSE Firmware

Secure Boot Assist Flash (aka SBAF)

HSE firmware installation

HSE firmware restoration

Debug authorization

Partition swapping enablement

XRDC configuration

Support in firmware update

Secure and JTAG based recovery mode

The HSE firmware is the software component that provides a variety of native security services as

described below.

Administration services are provided to install, configure and test the HSE.

Key management services are available for the application to manage different sets of keys that are
handled by the HSE for example through the cryptographic services.

Cryptographic services provide the application with cryptographic primitives that are used by high-
level security stacks in the application.

Random number services generate random streams that can be used in various security protocols.
Memory verification services allow the application to verify different memory areas at start-up (after
reset) and during run-time.

Monotonic counter services provide the application with a set of monotonic counters that can be
read and only incremented.

3.6.1 Reset (start-up flow)

Table 11: CPU subsystems released from reset by the HSE

Configuration Identification of the CPU Release conditions
subsystem(s) to release from reset
BOOT_SEQ == BOOT_TARGET (in IVT) Unconditional
BOOT_SEQ == 1 | Core Reset table (in SYS-IMG) Defined in the Secure Memory Region (SMR)
tables

5.2.1 Configurable HSE system attributes

A set of programmable HSE system attributes within the secure NVM can be provisioned by
the host via HSE administration services. Some of these attributes, once set, cannot be

updated.
Table 13: One-time configurable system attributes
Parameter Size Description
IVT_AUTH 8 bits Selects the IVT authentication method:

- When 0 (default): no authentication check
- When 1: forces the IVT and CFG authentication check
before running the HSE firmware

AUTH_MODE 8 bits Selects the method to open the host debug protection:

- When 0 (default): static authentication (password)
- When 1: dynamic authentication (challenge / response)

ADKP 128 bits Value of the application debug key or password

- If AUTH_MODE equals 0, ADKP is a password
- If AUTH_MODE equals 1, ADKP is a cryptographic key

ADKP_MASTER 8 bits Selects the method to provision ADKP in secure NVM:

- When 0 (default): the input value is ADKP and is written
“as is” in secure NVM

- When 1: the input value is considered as a master debug
key and is diversified with the device’s UID before being
written in secure NVM

LC 8 bits Selects the life cycle: OEM_PROD or IN_FIELD

ADKP_MASTER ----) Extend HSE Security Policies

This allows to provision a device-dependent debug key (or password) and to use ADKP as
a master debug key: the device-dependent key can be calculated based on the UID and
the knowledge of the master key is which is never shared.

enableADKm == 1

Calculate UID SHA-256 Hash

Calculate SHAZ224
Hash of ADKP

calculate ADKP
SHA-256 hash

encrypt hashed UI1D with
hashed ADKP as key

Calculated encrypted key
SHA-224 hash of 16 bytes

Hash calculated.

Figure 46. Verify ADKP when enableADKPm=1

If set, the following logic must be used at customer's end for debug-
authorization:

- hUID = SHA2_256(UID)

- hADKPmM = SHA2_256(ADKPm)

- ADKP {for debugger} = AES256-ECB(hUID(16 bytes..0 to 15)), key =
hADKPm; {ADKPm = customer's master key/ password}.

The hash of ADKPm (set using ADKP attribute) will be used as the key in the
derivation of the application password.

6.4.2 Execution rights (Super User vs. User)

Table 17: Execution rights and respective limitations in key management

Service SU rights User rights
Import a new NVM key (i.e. in an empty key | Encrypfion Optional Mandatory
slot) Authentication Optional Mandatory
NVM key generation (i.e. in an empty key slot) Possible Not possible
NVM key deletion Possible Not possible
Copy part of a RAM key to an NVM key slot Possible Not possible

Load an user defined ECC curve Possible Not Possible

Table 18: Execution rights and respective limitations in HSE configuration

Service SU rights User rights

Set HSE system attributes Possible Not possible
(except for SET-
ONCE-ATTR
attribute types)

Authenticate the host system images (IVT, CFG) Possible Not possible

Complete SMR entry update (including key handle) Possible Not possible

Update a Core Reset entry Possible Not possible

Monotonic counter configuration Possible Not possible

HSE AUTHORIZATION DEFAULT STATE

The execution of certain HSE services is conditioned by the execution rights granted to the host:

+ SuperUser (OEM or CUST) rights - high execution privileges and less restrictions on service requests
+ User rights - restricted execution privileges

After reset, the System Rights are synchronized with Life cycle (LC):

Life Cycle SYS rights after reset

CUST_DEL CUST SuperUser rights are granted.
OEM_PROD OEM SuperUser rights are granted
IN_FIELD User rights are granted

PRE_FA User rights are granted

7.1 Cryptographic keys

The keys accessible to the host via the cryptographic services are organized in groups of certain types,
within catalogs that are statically configured by the host.
Each key has a value and certain attributes contained into individual key slots, that are dynamically

configured by the host via key management services

Figure 32: lllustrating the key catalogs

SYS-MG) HSE Firmware |

Key catalog ROM ﬂ]

Keygroup #0 |

Key catalog NVM] 1 X AES 128-bit key

Key group #0 | Key slot #0 |
10 x AES 128-bit keys Key group #1

Key catalog RAM ‘

Key slot 40 2 x AES 256-bit kays
Keypsigh #1 Koy slot #0
I
|) Key slot #1
| Key siot #0 |

Key group #2)
Key group #1 1 % RSA 2048-bit key

1% ECC 256-bit key pair | —— |
Key slot #0
Keygroup #3 |
Key slot #1 1x ECC 256-bit key
| Kay slot #0 |

7.1.2 Key storage
SYS-IMG contains:

- The structure of the RAM and NVM key catalogs
- The NVM key properties

- The NVM key values, or a pointer to the key values stored in the host memory for the key types
HSE_KEY_TYPE_RSA_PUB_EXT and HSE_KEY_TYPE_ECC_PUB_EXT (see below)

Key properties and values are updated within SYS-IMG after successful key provisioning operations.

SYS-IMG is saved in secure NVM (i.e., internal Flash) by the host. SYS-IMG is loaded and authenticated by
the HSE at start-up.

A key group is a set of cryptographic keys of the same type. Each group is identified by an index within the
key catalog where it is declared (see next section). The index aligns with the order of declaration in the group:
the first group has the index 0, the second group has the index 1, etc.

The below table lists the different key types supported by the HSE.
Table 26: Key types

Key type Description Key catalog
HSE_KEY_TYPE_AES AES key NVM & RAM
HSE_KEY_TYPE_SHE AES key used with SHE specific services NVM & RAM
HSE_KEY_TYPE_HMAC HMAC key NVM & RAM
HSE_KEY_TYPE_RSA_PAIR RSA key pair (public & private) NVM only

HSE_KEY_TYPE_RSA_PUB RSA public key NVM & RAM
HSE_KEY_TYPE_RSA_PUB_EXT RSA public key, stored in application NVM NVM & RAM
HSE_KEY_TYPE_ECC_PAIR ECC key pair (public & private) NVM & RAM
HSE_KEY_TYPE_ECC_PUB ECC public key NVM & RAM
HSE_KEY_TYPE_ECC_PUB_EXT ECC public key, stored in application NVIM NVM & RAM
HSE_KEY_TYPE_DH_PAIR DH key pair (public & private) NVM & RAM
HSE_KEY_TYPE_DH_PUB DH public key NVM & RAM
HSE_KEY_TYPE_SHARED_SECRET | Shared secret, can be used to derive a secret key | RAM only

7.1.4 Key slot
A key slot is a memory container that holds a single key, with its value(s) and attributes.

HSE Key Format

hseKeyGroupCfgEntry t my_NVM_key_catalog[] = {

/* AES keys */

{HSE_MUO_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_AES, 10, 128},

{HSE_MUO_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_AES, 10, 256},

/* ECC keys */

{HSE_MUO_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_ECC_PAIR, 2, 256},

{HSE_MUO_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_ECC_PUB, 5, 256},

/* RSA keys */

{HSE_MUO_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_RSA_PAIR, 2, 2048},
{HSE_MUO_MASK | HSE_MU1_MASK, HSE_KEY_OWNER_CUST, HSE_KEY_TYPE_RSA_PUB, 10, 4096},
{0,0,0,0, 0}

ik

KEY Handle 0 Key catalog ID Key group index Key slot index

7.2 Key management

Key management services are available to the host to:

- Initialize and update key values and properties
- Export key values and properties

- Generate and derivate key values

- Establish secret keys in a secure manner

7.1.2 Key storage

7.1.2 Key storage
SYS-IMG contains:

- The structure of the RAM and NVM key catalogs

- The NVM key properties

- The NVM key values, or a pointer to the key values stored in the host memory for the key types
HSE_KEY_TYPE_RSA_PUB_EXT and HSE_KEY_TYPE_ECC_PUB_EXT (see below)

Key properties and values are updated within SYS-IMG after successful key provisioning operations.

SYS-IMG is saved in secure NVM (i.e., internal Flash) by the host. SYS-IMG is loaded and authenticated by
the HSE at start-up.

Key 7~

A key K can be imported by the host to the HSE in plain or encrypted with an encryption key K. It can be
further authenticated using an authentication key K, .

Depending on its type, a key K has either a single value (a secret that can be shared) or a pair of values made
of a private key (a secret that is never shared) and a public key (not a secret).

The secret or private value of a key K is noted k... The public key value of K is noted k,,,;,.

The properties of K (usage, access restrictions, etc.) are defined by the host and provided along with the key
values.

K. is used to decrypt k... when it is provided encrypted by the host. k,,;, (if any) is always provided in plain.

K, is used to authenticate a container where k.. and k,,, are stored among other information (if any).

7.2.11 Key value verification

#itdet HSE_SPT_KEY_VERIFY
/** @brief The algorithm used for key verification .*/
typedef uints_ t hseKeyVerAlgo_t;
ne (
ne HSE_KEY_VER_SHA384
ne HSE_KEY_VER_SHAS12
ne HSE_KEY_VER_CMAC

ALGO_SHA2 256) /**«<
50 SHA2 384) < ¢

GO_SHA2_512) /**< @brief SHAS12 */
_ALGO_CMAC) /**< @brief CMAC (AES) */

@brief SHA256 */

7.2.3 Key import

6.2.3.4 Key properties

The imported key attributes defined in Key attributes must be provided with the pointer pKeyInfo as listed in

the below table.

Table 52. Key attribute mapping in pKeyInfo

Key attribute Data field Possible values
Key bit size pKeyvInfo=2keyBitLen 16-bit integer
Key Type pKevInfo=2keyType Key type; see Key group and key type

Update counter

pKeyInfo=*keyCounter

28-bit integer

Access restriction flags

Usage flags

pKeyInfo=*keyFlags

Binary OR combination of HSE_KF_
ACCESS_xxx and HSE_KF_USAGE_xxx

SMR verification map

pKeyInfo=2smrFlags

Binary OR combination of HSE_KF_SMR_xxx
enumerates

Curve ID (ECC keys only)

pKeyInfo=*specific.eccCurveld

See Notes on ECC keys

Public exponent size (RSA
keys only)

pKeyInfo=2specific.pubExponent
Size

The public exponent size in bytes; see Key
values

AES Block Mode Mask (AES

pKeyInfo=*aesBlockModeMask

keys only)

Bit field to declare the block cipher modes that
can be used with the key. If it is cleared to

0, any AES cipher mode can be used. See
HSE Service APl Reference Manual .

7.2.3.5 Key values

The imported key values are provided via the array of pointers pkey[] as listed in the below table.

Table 52: Pointer to provisioning key values vs. key type

Key type pKey[@] pKey[1] pKey[2]
HSE_KEY_TYPE_AES unused unused Value of k
HSE_KEY_TYPE_SHE Provisioning via SHE services only
HSE_KEY_TYPE_HMAC unused unused Value of k
HSE_KEY_TYPE_SHARED_SECRET | unused unused Value of k
HSE_KEY_TYPE_RSA_PAIR Value of n Value of e Value of d
HSE_KEY_TYPE_RSA_PUB Value of n Value of e Unused
HSE_KEY_TYPE_RSA_PUB_EXT Value of n Value of e Unused
HSE_KEY_TYPE_ECC_PAIR Value of gNotel unused Value of w
HSE_KEY_TYPE_ECC_PUB Value of @Nete] unused Unused
HSE_KEY_TYPE_ECC_PUB_EXT Value of gINotel unused Unused
HSE_KEY_TYPE_DH_PAIR Value of p Value of T, Value of a
HSE_KEY_TYPE_DH_PUB Value of p Value of T, Unused

[Note] The point coordinates are encoded depending on the curve type (see Table 54)

Figure 35: lllustrating the use of a key container (provisioning a RSA public key)

keyContainer pKeyContainer———| ™
size: keyContainer keyContainerLen RSA put?ic key
container
pKeylInfo >
Key attributes
- keyContainer.pAuth[0]
pKey[0} » RSA signature size: keyContainer.authLen[0]
size: keyLen[0] >
Value of n
pKey[1] >
size: keyLen[1] Value of e
J

Key Container import

Table 48: Parameters for an authenticated key import

Data field Explanation

keyContainer.pKeyContainer The pointer to the memory container that contains the imported key
value(s) and the key properties.

The memory location must be accessible by both the host and the
HSE.

keyContainer.keyContainerLen The byte size of the container.

keyContainer.authScheme The authentication scheme used to authenticate the key container.

The proof of authenticity can be an authentication tag (i.e., a Message
Authentication Code (MAC)) or a public key signature scheme (i.e.,
RSA or ECC signature).

keyContainer.authKeyHandle The key handle to K,, which must:

- Bedeclared in a key group owned by the same owner
as the target key handle

- Refer to a non-empty key slot having its key usage
flags HSE_KF_USAGE_KEY_PROVISION and
HSE_KF_USAGE_VERIFY set

- Refer to a key type that matches with the
authentication scheme selected

keyContainer.pAuth[i] The pointer(s) (i is 0 or 1) to the proof of authenticity, calculated over
the key container.

The memory location must be accessible by both the host and the
HSE.

When the proof of authenticity is an authentication tag, pauth[e] is the
pointer to the MAC calculated over the key container and pauth[1] is
not used.

0

50 keyinfo
66

166 keyO

166 + 256 + 16=438 key 1

7.3 Key management: SHE keys

7.3.2 Declaring SHE keys

The AES 128-bit keys specified in [REF40] are declared as HSE_KEY_TYPE_SHE in specific key groups

and slots within the key catalogs as described in the below table

Table 63: SHE keys

SHE key name (ID)

Key catalog

Key group index

Key slot index

SECRET_KEY (0x00)

ROM key catalog

N/A

N/A

MASTER_ECU_KEY (0x01)

NVM key catalog

BOOT_MAC_KEY (0x02)

KEY_1 (0x04)

KEY_2 (0x05)

0

W N = O

KEY_3 (0x06

KEY_5 (0x08

)
KEY_4 (0x07)
)
)

KEY_6 (0x09

KEY_7 (0x0A)

KEY_8 (0x0B)

KEY_0 (0x0C)

KEY_10 (0x0D)

RAM_KEY (0xOE)

RAM key catalog

BOOT_MAC

The “special” BOOT_MAC value defined in the [REF40] is the CMAC value over the “boot” (and its size)
calculated using the key BOOT_MAC_KEY. In the HSE, this “special’ key corresponds to the reference

authentication tag of the secure memory region (SMR) #0. It is not mapped as a key but can still be updated

using the SHE key update protocol.

7.3.6 SHE key provisioning

Table 66: Acronyms used in the SHE key update protocol

Acronym Description

ID Identifier of the key to update Kip (see Table 68)

AuthlD Identifier of the authentication key Kaunp (see Table 68)

Ko’ New key value

Kauthip Authentication key value

Cio’ New counter value

Fio' New security flag values, the concatenation WRITE_PROTECTION || BOOT_PROTECTION
|| DEBUGGER_PROTECTICN || KEY_USAGE || WILDCARD || VERIFY_ONLY

Cio Current counter value

Fio Current security flag values

CMACK(M) | CMAC calculation over M using key K

ENCxk(M) AES CBC-encryption of M using key K (IV =0)

Cenc KDF input constant for deriving an encryption key

Cmac KDF input constant for deriving an authentication key

Table 68: Key ID values in SHE key update protocol

Key to update / Authentication key ID / AuthID
SECRET_KEY 0x00
MASTER_ECU_KEY 0x01
BOOT_MAC_KEY 0x02
BOOT_MAC 0x03
KEY_1,KEY_11,KEY_21, KEY_31, KEY_41 0x04
KEY_ 2, KEY_12, KEY_22, KEY_32, KEY_42 0x05
KEY_3, KEY_13, KEY_23, KEY_33, KEY_43 0x06
KEY_4, KEY_14, KEY_24, KEY_34, KEY_44 0x07
KEY_5, KEY_15, KEY_25, KEY_35, KEY_45 0x08
KEY_6, KEY_16, KEY_26, KEY_36, KEY_46 0x09
KEY_7, KEY_17, KEY_27, KEY_37, KEY_47 Ox0A
KEY_8, KEY_18, KEY_28, KEY_38, KEY_48 0x0B
KEY_9, KEY_19, KEY_29, KEY_39, KEY_49 0x0C
KEY_10, KEY_20, KEY_30, KEY_40, KEY_50 0x0D
RAM_KEY Ox0E

Chapter 8. Memory Verification Services

Figure 40: Illlustrating the memory verification service (SMR)

S32x (host)

Application Memory SMR verification status (8 bits)

SYSIMG 1

"

SMR #0

measures

SMR Table

authenticity proof

SMR #8

Core ID [resetvec | SMRentries |

| CoreID | reset \./ec] SMR entries |

authenticity proof

IC\;;;Llication Key catalog NVM
subsystem

allows/restricts
usage

Key catalog RAM

secure memory region (SMR) is defined by a start address and a size, associated to a proof of
authenticity, either a MAC or a RSA/ECC signature, which authenticates the region’s content

For all SMR that have been defined, the HSE verifies the authenticity of memory contents:
- During the device start-up phase (after reset)
- While the application(s) is(are) running on the host side (during run-time)

Sanctions:

Unsuccessful verification can keep select subsystems on the host side in reset state; those
subsystems are referenced in the Core Reset (CR) table

- Likewise, failing to verify certain SMR can render select keys within the HSE unusable;
these restrictions are defined individually for each key via the SMR verification map

memory verification services are made of:
- The SMR installation service

- The SMR verification service

- The Core Reset table installation service

EUSSUNHSE SRV_TD_SMR_ENTRY_INSTALL] ((hseSrvId_t)(HSE_SRV_VER_@ | @x0e000501UL)) /**< @brief Install a Secure memory region (SMR) table entry, */

#define HSE_SRV_ID_SMR_VERIFY ((hsesrvId_t)(HSE_SRV_VER @ | exoel 2uL)) /**< @brief verify a Secure memory region (SMR) table entry. =/

#define HSE_SRV_ID_CORE_RESET_ENTRY_INSTALL ((hseSrvId t)(HSE_SRV_VER @ | @x00000503UL)) /**¢ @brief Install a Core Reset(CR) table entry. */

#idefine HSE_SRV_ID_ON_DEMAND_CORE_RESET ((hsesrvid_t)(HSE_SRV_VER @ | exeeesese4uL)) /**< @brief on demand release a core from reset after loading and verificat

The host can define up to 8 SMR clustered into the SMR table

8.5.42 Specific use (SMR #0)

The SMR #0 is the only SMR that can be associated to the SHE AES key BOOT_MAC_KEY as the SMR
authentication key. In this case, the reference authentication tag is the CMAC value referred to as
BOOT_MAC.

The BOOT_MAC value can be initialized and updated via the SHE key update protocol (see section SHE key
update protocol).

In addition, when host is granted with SU rights, BOOT_MAC can be automatically calculated as described
below.

On the first SMR #0 installation using BOOT_MAC_KEY, if BOOT_MAC is empty (i.e. not initialized) and if
BOOT_MAC_KEY has been provisioned, the reference authentication tag is calculated by the HSE and saved
in BOOT_MAC. This specific installation process satisfies the requirement in [REF40] referred to as
“autonomous bootstrap configuration”.

demo_app

~ ﬂ 6. HSW FW Features
> ﬂ 6.1. HSE Attribute Programming
ﬂ 6.2. HSE Cryptographic Services
> ﬂ 6.3. Secure BAF Update
> [1 64.HSE FW Update
? ﬂ 6.5. Secure Boot Demo

> D 6.6. Monotonic Counter

demo A % & i R i}
HSE_DEMOAPP_S32K3X4_0_1_1_0\demo_security_installer\src\demo_app\services

FYEHl:

1. APP_PROGRAM_HSE_ATTRIBUTE

2. APP_RUN_HSE_CRYPTOGRAPHIC_SERVICES F/E% % HSE_Crypto()
3. APP_HSE_FW_UPDATE:

1) HSE_FwUpdateExample(gNewHseFwAddress);
2) HSE_ActivatePassiveBlock() abswap

4. APP_SECURE_BOOT_CONFIGURED sbl

Secure Boot Demo

Table 1. Secure boot modes
Mode Key Scheme SMR use Number of protect regions | Proof location
BSB ADKP GMAC No 1 Application NVM
ASB Sym or Asym key | MAC or Sign Yes Upto8 Secure NVM
(igg) BOOT_MAC_KEY CMAC Yes (only SMR #0) 1 Secure NVM

The procedures of configuring these secure boot modes are shown in the Figure 8 below.

Provision ADK/P SHAZ256 hash key

v

Calculate the GMAC of AppEL

v

Write the tag appended to Flash

v

Set BOOT_SEQ = 1in BCW

v

Issue a functional reset

v

Verify the AppBL

v

Enabile the application core if
authenticate successfilly

(a) Basic Secure Boot

2.5. AppBL

The constituent elements of AppBL structure are shown in the Figure 7 below.

Offset(Bytes)

0x00

Figure 8. Three Secure Boot modes

Format NVM and RAM key catalogs

Format NVM and RAM key catalogs

v

v

Load Symmetric or asymmetric keys

Load SHE BOOT_MAC_KEY

v

v

Install SMR and CR tables

Install SMR #0 and CR #0

v

¥

SetBOOT_SEQ = 1InBCW

Set BOOT_SEQ = 1in BCW

v

v

Issue a functional reset

Issue a functional reset

v

v

Verify all SMR

Verify SMR #0

v

v

Apply the crSanction

Apply the crSanction according to
SHE Spec

(b) Advanced Secure Boot

AppBL header tag L Magic number
(0xD5)
001
0403 [Resewed]
i Magic number
AppBL version
004 (0x60)
e Al tent start add
--1 I PP content start addres
Start address. — (Pointen)
00C
. App content Size
AppBL N —
ppBL size (N) (32-bit integer)

1
l
1
1
0x10 I
|
014 :7
[T —

S

Core identifier

Authentication TAG Ny

a.

" Core id value

(for S32K344 set to “0")

<«—— App Executable code

Authentication tag

Figure 7. AppBL structure

(c) SHE based Secure Boot

Fw v210

NEW SYSTEM IMAGE STRUCTURES

m AppBL image (content)
w [T —— 0x00 4-byte AppBL header tag
[oxo0 4-byte IVT header tag :
0xoC Size (N bytes) img1 (0x40 + N bytes)

0x20 Pointer RESERVED m
N +0x40 12-byte random vector (IV1) m

N + 0x4C 16-byte authentication tag =

0x30 Pointer to AppBL GMAC (img1, IV1, ADKP-extended)

g0 (0xFO bytes) ¢

0x40 Pointer to Recovery image

0x44 Recovery image size (M bytes)

| OxE4 12-byte random vector (I¥0) m m Recovery image (content)
0xFO 16-byte authentication tag = 0x00 First executable byte
GMAC (img0. [V0, ADKP-extended) img2 (0XOC + M bytes)

M 12-byte random vector (1V2) m

M+ 0x0C 16-byte authentication tag =
GMAC (img2, IV2, ADKP-extended)

Basic Secure Boot (BSB)

Authenticate:
application header : AES-GMAC algorithm
key : ADK/P SHA256 hash key

BSB can boot only one core (the booted core can start other cores).

The application image should contain the header that includes all information needed for BSB (i.e.
same as in un-secure boot).

The signature should be appended to the end of AppBL and generated

using a key derived from ADK/P.

Advanced Secure Boot (ASB)

Install and verify SMR#0 to SMR#4 and CRO with following options for multiple crypto
algorithms in configurable options such as:

a. AES CMAC

b. AES GMAC

c. HMAC

d. RSA-PKCS

e.ECC

o This demo application can be configured in any cipher combination mentioned above.
o Secure boot application is booted with core 0.

SHE based Secure boot

HSE FW does SHE based boot operation using SMR and CR tables. Only SMR #0 should be
used to implement SHE secure boot.

authKeyHandle =NVM_SHE_AES128_BOOT_KEY
macAlgo = HSE_MAC_ALGO_CMAC

SecureBootApp

SHECommandApp

V0210 vs vO0110

/* load P224 curve into HSE */

srvResponse = LoadEccUserCurve (HSE_EC_USER_CURVEL,
224, 224,
ECC_SECP224R1_CURVEPARAM A, ECC_SECP224R1_CURVEPARAM B,
ECC_SECP224R1_BASEPOINT, ECC SECP224R1 ORDER N, -
ECC_SECP224R1_PRIME P); - - -

if (HSE_SRV_RSP_OK != srvResponse)

{

goto exit;
)

[ARRERRRARRAAAARAAAAAAAAAAAE Node | Test [T xxxxy
/* Load Node 1's Device Key */
srvResponse = ImportEccKeyReg(

HSE_KEY TYPE_ECC_PAIR,
(HSE_KF_USAGE_EXCHANGE | HSE_KF_ACCESS_EXPORTABLE) ,
HSE_EC_USER_CURVEL,

224, — T

fcazl,

fcanl

yi
if (HSE_SRV_RSE OK !~ srvResponse)
(

goto exit;
}

/* Load Z3 in Slot 0 (Node 2 Predecessor) */
srvResponse = ImportEccKeyReg(

HSE_KEY TYPE_ECC_PUB,
HSE_KF_USAGE_EXCHANGE | HSE_KF_ACCESS_EXPORTABLE,
HSE_EC_USER_CURVEL,

/* load P224 curve into HSE */

srvResponse = LoadEccUserCurve (HSE_EC_USER_CURVEL,
224, 224,
ECC_SECP224R1_CURVEPARAM A, ECC_SECE
ECC_SECP224R1_BASEPOINT, ECC SECP224
ECC_SECP224R1_PRIME P); -

if (HSE_SRV_RSP_OK != srvResponse)

{

goto exit;
)

JERRAERARRARRRAKRAAXAAXRAAKAE Node | TESE AXAARRAAXAAAXAAKXAEAAL

/* Load Node 1's Device Key */
srvResponse = ImportEccKeyReq(

HSE_KEY TYPE_ECC_PAIR,
(HSE_KF_USAGE_EXCHANGE | HSE_KF_ACCESS_EXPORTABLE) ,
HSE_EC_USER_CURVEL,

224, — T

fcazl,

fcanl

)i
if (HSE_SRV_RSP_OK !- srvResponse)
{
goto exit;
}

/* Load Z3 in Slot 0 (Node 2 Predecessor) */
srvResponse = ImportEccKeyReq(

HSE_KEY TYPE_ECC_PUB,
HSE_KF_USAGE_EXCHANGE | HSE_KF_ACCESS_EXPORTABLE,
HSE_EC_USER_CURVEL,

Key formatted v0210

HSE_DEMOAPP_S32K3XX 0 2 1.0 » demo_security installer » src » demo_app » services » inc » standard

e

EfR [=k =R

Fors

- I

Jime_u Latay
hse b catalog formatting.h

Symbol Name (Alt+L)

-8 HSE_DEMO_NVM_ECC_BOOT_KEV_HAI A

LU (ST ST SIS e\ SIL) | 1SS LaLAIUY 1AL ST STUL LY 1S ISE e \SLAT I S | 1SS g (US I STa iy
HSE_KEY_OMNER_ANY, WRP_KEY_TYPE_ECC_PAIR, 2U, WRP_ECC_KEY_SIZE},
U_MASK, HSE_KEY_OMNER_ANY, WRP_KEY_TYPE_ECC_PUB, 5U, WRP_ECC_KEY_SIZE},
MU_MASK, HSE

SIS Lt

) TKEY_OWNER_ANY, HSE_KEY_TYPE_SHARED_SECRET, 2U, HSE_KEY638_BITS},
MUMASK, HSE_KEY_OWNER_ANY, HSE_KEY_TYPE_SHARED SECRET, 1U, HSE_KEY2848 BITS),

au, eu, eu, eu, au

HSE_DEMO_NVM_RSA2048 PAIR_CUST
-3 HSE_DEMO_NWVM_RSA2048_PUB_CUST #define HSE_DEMO_NVM_SHE_AES128_BOOT_KEY GET_KEY_HANDLE(HSE_KEY_CATALCG_ID_MNVM, &, 1)
4% HSE_DEMO_NVM_RSA2048_PUB_CUST,

& HSE DEMO SHE RAM KEY HANDLE #define HSE_DEMO_NVM_AES128_PROVISION_KEY GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 1, @)

#define HSE_DEMO_NVM_AES128_BOOT_KEY GET_KEY_HANDLE (HSE_KEY_CATALOG_ID_NVM, 1, 1)

-4 HSE_DEMO_RAM_AES128_KEYD #define HSE_DEMO_NVM_AES128_AUTHORIZATION_KEY GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_MVM, 1, 2)

4 HSE_DEMO_RAM_AES128_KEY1

.8 HSE_DEMO_RAM_AES256_KEYD #dafine HSE_DEMO_NVM_AES256_PROVISION_KEY® GELKEV,HANDLEEHSEJE\;CAT.&, 0G_ID_NVM, 2, eg
#define HSE_DEMO_NVM_AES256_PROVISION_KEY1 GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 2, 1

i) L e A #define HSE_DEMO_NVM_AES256_KEY2 GET_KEY_HANDLE(HSE_KEY_CATALDG_ID_NWM, 2, 2)

4 HSE_DEMO_RAM_AES236 KEY2 #define HSE_DEMO_NVM_AES256_KEY3 GET_KEY HANDLE(HSE KEY CATALOG_IO_NVM, 2, 3)

- § HSE_DEMO_RAM_AES128_ADKP_KEY

HSE_DEMO_RAM_HMAC_KEYD #define HSE_DEMO_NVM_HMAC_KEY® GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 3, @)

4% HSE_DEMO_RAM_HMAC_KEY1 #define HSE_DEMO_NVM_HMAC_KEY1 GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 3, 1)

-4 HSE_DEMO_RAM ECC_PAIR_KEY_HAN sdefine HSE_DEMO_NVM_ECC_BOOT_KEY_HANDLE GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 4, @)

& HSE_DEMO_RAM_ECC_PUB_KEY_HANI #define HSE_DEMO_NVM_ECC_BOOT_KEY HANDLE_1 GET_KEY HANDLE(HSE_KEY CATALOG_TD_NWM, 4, 1)

- § HSE_DEMO_RAM_ECC_PUB_KEY_HANI

4% HSE_DEMO_RAM_ECC_PUB_KEY_HAMNI /* Copy of authorization keys to generate the signature over the challenge */

#define [EEINIEE NN S LGN GET_KEY_HANDLE(HSE_KEY_CAT
sdefine HSE_DEMO_NVM_RSA2048_PAIR_CUSTAUTH_HANDLE1 GET_KEY_HANDLE(HSE_KEY_CATAL

G_ID_NVM, 7, @)
G_ID_WWM, 7, 1)

-8 HSE_DEMO_DERIVED_KEY_HANDLE
4% HSE_DEMO_BD_SHARED_SECRET_KEY_

4% HSE_DEMO_DH_SHARED_SECRET_HAM /* Must be in NWM #/

4% HSE_DEMO_RAM_SHARED_SECRET4091 #define HSE_DEMO_NVM_RSA2048_PUB_CUSTAUTH_HANDLE® GET_KEY_HANDLE (HSE_KEY_C!)G_ID_NVM, B, @)
4 HSE DEMO_DH SHARED SECRET HAN #define HSE_DEMO_NVM_RSA2@48_PUB_CUSTAUTH_HANDLE1 GET_KEY_HANDLE(HSE_KEY_CATALOG_ID_NVM, 8, 1)
4 HSE_DEMO_DH_SHARED. SECRET HAR /= Pointe to a £CC key pair W slot =/

V0110

SE_DEMOAPP 532K3¥4 01 1.0 » demo_security installer » src » demo_app » framework » host_hse » hse b

.

EfR = =3 Fuh

| hse_default config.h 2021/10/13 20:25 H 3zi% 21 KB

Image

HSE FW Pink

image

HSE FW image delivered by NXP. This is encrypted and authenticated with
keys known by NXP. Authentication (signature generation) is done with an

asymmetric algorithm.

HSE FW Image

The first byte of an image header, also known as marker.

header tag 0xDA — Full Mem HSE firmware
0xDB — AB SWAP HSE Firmware
0xDC - Encrypted Secure-BAF Image
IVT image First 256 bytes of data read by HSE firmware after reset.
Contains some attributes configured by secure BAF and references to the
other images used by secure BAF/HSE FW at boot time.
Table 3. HSE-IMG header for Full Mem HSE firmware configuration
Byte 0 Byte 1 Byte 2 Byte 3
0xDA O0xFF 0xFF 0x60

App =5AA55AA5

Hse {R B %R

secure BAF will reserve

the [76KB arealof code flashi and

168KB of data flash area for HSE area.
48k ram(?2H7[E AN F)

RM559614-HSE-B Firmware Reference Manual -V1.2(1.4)

Table 118: Secure NVM mapping (FULL_MEM)

Device Flash area Start address Size

Common HSE data flash 0x10016000 168KB
HSE configuration (UTEST) 0x1B000000 8KB

S32K344, HSE code flash 0x007D4000 176KB

S32K324,

S32K314

S32K312, HSE code flash 0x005D4000 176KB

S32K342,

S32K322,

S32K341

Table 119: Secure NVM mapping (AB_SWAP)

Device Flash area Start address Size

Common HSE data flash 0x10020000 128KB
HSE configuration (UTEST) 0x1B000000 8KB

S32K344, HSE code flash (passive area) | 0x007D4000 176KB

S32K324, HSE cade flash (active area) 0x005D4000 176KB

S32K314

S32K312, HSE code flash (passive area) | 0x005D4000 176KB

S32K342, HSE code flash (active area) 0x004D4000 176KB

S32K322,

§32K341

*The sizes mentioned are only valid for Standard Firmware.

Crypto Driver

S32K3XX_CryptoDriver_and OTA_ AdvancedTraining.pdf

SECURITY SOFTWARE LAYERED ARCHITECTURE

BARE-METAL AUTOSAR . .
- Security Software Drivers

RUN TIME ENVIRONMENT

- Crypto Driver

Application = Crypto Driver Interface for AUTOSAR Crypto
Stack

MCAL DRIVERS

e - Hse_lp Driver
= Bare-Metal Driver for interfacing with Security
REAL TIME DRIVERS Firmware
Drivers
Hse_lp
Firmware

CRYPTO DRIVER AS PART OF THE AUTOSAR STACK

+ The Crypto Stack offers standardized access to cryptographic services for applications and system functions.
« The Crypto Driver is a driver for a specific device, abstracting the features supported by the hardware.

Application Layer

Runtime Environment

NXP CRYPTO STACK STRUCTURE

Crypto Driver is layered as following:
+ Crypto Autosar
o Implements the Autosar APls

o Offers Extension APIs to extend the standard
APIs

+ HSEIP
o Low level driver that is simple and fast

o Offers IP APls to communicate with HSE
firmware

CRYPTO DRIVER FEATURES

Application Layer

4

[RTE

-
]
R TR—

Service Layer]

Crylf
ECU Abstraction Layer
Crypto ASR HLD

Crypto_Hse

Crypto ASR Extension

]]
—
.

Extension Services

AES encryption & decryption

AES authenticated encryption & decryption
Hashing

MAC generation & verification

Signature generation & verification

RSA encryption & decryption
Key generation

Key derivation services

Key Sizes (max key sizes)
Key Import & Export

Shared Secret generation

Random Number Generation

SHE Services
ECB CBC CTR OFB CFB
AES-CCM AES-GCM
SHA-1 SHA-2 (all digest sizes), Miyagucci Preneel
CMAC FAST_CMAC HMAC GMAC

RSA PKCS-1.5 and PSS
ECDSA
EdDSA?

PKCS-1.5 and OAEP
Symmetric AES Keys, RSA & ECC Key Pairs
PBKDF2 X9.63 TLS1.2

AES (up 10 256) RSA (up to 4096) HMAC(up t01152) ECC(up to 521)

AES SHE ECC
ECDH
DRG.3 DRG.4 PTG.3

[Standard and user configurable Weierstrass & Montgomery curves

12 Curve Ed25519, Curve 448

Doc ref

C:\NXP\HSE_DEMOAPP_S32K3X4_0_1 1 0/HSE_DEMOAPP_S32K3X4 0_1 1 0 ReadMe.pdf
235, demoapp SRR

C:\NXP\HSE_DEMOAPP_S32K3X4_0_1_1 O0\demo_security_installer\docs/NXP_SECURE_BAF_
UPDATE_README.pdf
C:\NXP\HSE_FW_S32K3X4_0_1_1_0\docs/HSE Service API Reference Manual

HSE Firmware Reference Manual ???

RIENGES

Authentication: Designed to assure that something is what it claims to be.
Authenticity: Assurance that code is from the source it claims to be.
Digital Signature: An asymmetric key algorithm that associates a

calculated number to both a message and its signer.

Sign/Verify: See Digital Signature

HSE Hardware Security Engine

uiD 8bytes in UTest NVM

ADK/P debug key/password (ADK/P) 128bit

ECB

CBC

CTR

OFB

CFB

Electronic code book

Cipher block chaining

Counter-based block cipher mode

Output feedback based block cipher mode

Cipher feedback mode

Key Provisioning

Initializes Crypto Driver

Performs Key Provisioning (Catalog format, loads AES-128 and RSA Key pair (2048bit)

Performs RSA-2048 Signature Generation and Verification (using RSASSA-PSS & SHA256 hash algarithm)
Performs AES-128-CTR Encryption and Decryption operation

Performs Hash generation using SHA256 algorithm

Performs OTA application update

« After next reset, the new application is executed

AR

1.AES

AES

Advanced encryption standard

AES FTLAfERRA/N 128 Bits, 192 Bits #1256 Bits fy&4A

2. RSA

RSA Rivest-Shamir-Adleman (a public key cryptosystem)

OAEP= Optimal Asymmetric Encryption Padding, EEAFXERMIERIFRINZETE.
PSS = Probabilistic Signature Scheme, ElFATNHEMREZHE.

RSA HIINEEH SIS FIRT5 5 : — M2 RSAES-OAEP, SB—FhE RSAES-PKCS1-v1_5, RSAES BT4BAIRE.2 RSA ENCRYPTION SCHEME, PKCS#1
HEEFIEFTRIN AR {5 RSAES-OAEP, RAHTSMERS, METREYT RSAES-PKCS#1-v1 5 NXIFENTIRENNBREERS. SliIHNXE

{RET INEZRREHS AR, MIIERHRIBEA TR T RSS2 H.

PKCS#1 fU 4IRS 3: RSASSA-PSS &1 RSASSA-PKCST-v1_5, RSASSA RifIEE2 SIGNATURE SCHEMES WITH APPENDIX,
k¢, #EfE RSASSA-PSS FRFSHURIAD, T RSASSA-PKCST-v1_5 RFFFHAEMMA,

3.ECC #fh R ph £ N & i

ECC Elliptic curve cryptography

4. Hashing M7

Let's finish up with a side-by-side comparison of SHAL vs SHAZ:

Years During Which the Algorithm Was

2011-2015 Si 2016
Considered the Industry Standard mee
Other Names N/A SHA-256, SHA-256 Bit
How Many Possible Hashing Combinations 5160 2256 possible Combinations

Does It Have?

Single Hash or Family of Algorithms Hash
Values

Family of Hash Functions —224, 256, 384, and

Single Hash: 160-bit cio

Hash Algorithm Comparison Table: MD5, SHA-1, SHA-2, SHA-3

Kays for

Comparison

SHA-2 (224 &
256/384 & 512)

SHA-3
(224/258/384/512)

fvailable Sinoe

Block Sine

Hash Digest Size
{Ourtput)

Rounds of Operations

Construction

Collision Level

Successful Attacks

Commaon

Weaknesses

Security Level

ApplicationsApplications

Deprecated?

Miyaguchi-Preneel compression

1882

512 bits

128 bits (i, 18
bytes], or 32
hexadecimal digits

64

Merkla-Damgard

High — They can be
found in saconds,
EVEN using an
ordinary home

Computer.

Mamny. Researchers
showed
concreie evidenca in

004,

Vulnerable to
coolliion s,

Ly

Previously used for
data encryption, MODS
is now mostly used
for verifying the
imtegrity of files
against involuntary

carruption.

Yex

1985

512 bins

160 bits fi.e., 20 bytes),
ar 40 hexadecimal

digits

BO (4 groups of 20

raunds)

Merkle—Damgérd

Cheap and easy to find
as demanstrated by a

208 skudy.

Yes, many. The first one
called SHAteroo
happenead in 2017

Wulrerable to collisians.

Low

Previously widely used
in TLS and 55L.5till
wsad for HMAC (even il
il's recommended 1o
e I A mMore Secure
algorithm), and for
werilying the integrity of
files against imoluntsry
corruption.

using AES-ECB with 128-bit key size (SHE spec support).

2002

S121024 bins

258 bits {i.e., 32 bytes),
or B4 hexadecimal
digit=/512 bits (i.e, 64
bytes), ar 128
hexadecimal digits

Ed (for SHA-224 and
SHA-Z5E1/ED
[SHADEEL/SHA-512)

Merkle—Damgénd

Low — Mo known

collisions found o date.

SHA-256 has never been
broken.

Susceptible to preimagse

attacks,

High
Widely wused inc

w* Becurity applications
and protecals e.q.,
TLE, 55L, PGP, 55H,
SMIME, lpsec)

w Cryplocurrencies
ransactions
walidation

w Digital certificates

w Other applications

M

2006

MNS210BEB

IZ2/576 bits [this is refaprad
1o as & Rate [R] for SHA-3

algorithms)

22472567 3847512 bits [ie.,
281321 AB/E4 bytes), o
SE/E4/BE/2E hexadecimal

digits

24

Spange (Ksceak)

Low

Few collision bype aktacks

have been demonstrated.

Susceptible toc

w Practical collision.

w Mear collision attacks.

High

Used 1o replace SHA-2
when necessary (in speacific

circumsltances].

MAC message authentication codes (MAC)
CMAC Cipher-based message authentication code ---AES

GMAC Galois message authentication code ---AES

HMAC Keyed-hash message authentication code

ECDSA Elliptic curve digital signature algorithm

EdDSA Edwards-curve digital signature algorithm

PKCS1 Public-key cryptography standards. PKCS provides the basic definitions of,
and recommendations for implementing the RSA algorithm.

IPSec BEAMZ2tMY (Internet Protocol Security, IPSec)

PKCS Public-Key Cryptography Standards (PKCS)

ECIES Elliptic Curve Integrated Encryption Scheme (ECIES)

[X.209-88] CCITT Recommendation X.209: Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1),
1988.

[P1v1.5] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", RFC
2313, March 1998.

Optimal Asymmetric Encryption Padding (OAEP)

AEAD Authenticated Encryption with Associated Data
Authenticated block ciphering (AEAD)

Algorithms :

CCM, Counter with CBC-MAC (CCM)

GCM. GCM £FRA Galois/Counter Mode

Root of Trust: Secure foundation (hardware, software, firmware) of a system that

cannot be tampered with by malware.

secure memory regions (SMR)

Core Reset (CR)

CSEc vs. HSE — Cryptographic Services

Secure Subsystem _ CsEc |
AES encryption & decryption ECB CBC ECB CBC CTR OFB CFB XTS
AES authenticated encryption &
decryption N/A CCM GCM
M Miyaguchi-Preneel SHA-2 (all digest sizes)
9 compression function SHA-3 (all digest sizes)
Miyaguchi-Preneel compression function
XMAC generation & verification CMAC CMAC XCBC-MAC HMAC GMAC
RSAPKCS-1.5 + PSS
Signature generation & verification N/A ECDSAI
EdDSAR!
RSA encryption & decryption N/A PKCS-1.5 + OAEP
ECC encryption & decryption N/A ECIES
Random number generation TRNG TRNG AIS-31 Class P2 High + PRNG

TLS

TLS BB EME (Netscape) ANFIFFAR SSLINE, EREMYUEFERE IETF Z2/G, &

HEZNTLS,

[TLS/ssLmdiaz |
|

| SSL1.0 |— MHF~ENZ=mENEES

19952 — ;
EE—BLSEE ——| SSL20 |
752011 (RFC6167) diEE e - —
1996, RFC6101
Ee2Emeit
SEZPOODLERH
#£2015 (RFC 7568) thifiEss
1999.1 RFC 2246
MSRAERRERsE, “SSL” BEA TLS" — — =
TUHFA —{ |
2020FEHWESR —
22002006.4\ REC 4346
FETIRS T CBCRURIRS,;
BEERIVBCABRIV (AaTFum)
&84 tPaddingEiRfANES =,

HIANASEZS
2008.8 RFC 5246 2y HEID

2011.3RFC 6176
MD5-SHA-13SHA-256BU% TLS 1.2
FEGCMEECCMEZAE (GAIEINZER) |
IBINTLSY BENY B AESINZS X
2018.8 RFC 8446
MRS 2 HEEEEANS

TLS1.3 2018.9, OpenSSL1.1.1 support

Firefox 60.0ERASZES
Chrome FABRIASZE:, BILAFAEE

PriE R AR

the Secure Hardware Extension (SHE) specification developed by Escrypt for Audi and BMW via the
HIS Working Group, with early cooperation from Freescale in 2008, has now been accepted as an

open and free standard.

EVITA defines the overall functionality of three different hardware security module approaches: —
full, medium and light.

ARM- developed its TrustZone- security infrastructure

Trusted Computing Group (TCG), which claims to provide

open, interoperable and international standards for trusted computing. One specification
released by this organization is their Trusted Platform Module (TPM)—published as ISO/IEC

11889 Parts 1-4.

ISO/SAE 21434
ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering

4, General consideratlons
5. Organlzatlonal cybersecurlty management
541 54.2 543 544 545 54.6 ST
Cybersecurity Cyhersecurity Information Management Tool Information Organizational
governance eulture sharing systems management security cybersecurity
management audit
6, Project dependent cybersecurity management
641 6.4.2 6,43 644 645 6,46 647 kB 649
Cybersecurity | | Cybersecurity Tailoring Reuse Component Off-the-shelf | |Cybersecurity| |Cybersecurity Release for
responsibl- planning out-of-context| | component case assessment post-
lities development
7. Distributed cybersecurity activitdes
741 742 743
Supplier capability Request for quotation Alignment of responsibilities
8, Contlnual cybersecurity activities
a3 8.4 85 B.6
Cybersecurity Cybersecurity Vulnerability Vulnerability
monitoring event evaluation analysis management
Concept phase Product development phase Post-development phases
9, Concept 10, Product development 12, Production
9.3 10,41 13, Operations and maintenance
Item definition Design
133 134
9.4 104.2 Cybersecurity Updates
Cybersecurity goals Integration and verification incident response
q,ls 11, 14, End of cybersecurity
Cybersscurity concept Cybersecurity valldation suppart and decomlssloning
15. Threat analysis and risk assessment methods
153 154 15.5 15.6 15.7 158 159
Asset Threat scenario Impact Attack path Attack feasibility Risk value = sk enpainies
identification identification rating analysis rating determinatiow’ [~ decislon

UN R155 Uniform provisions concerning the approval of vehicles with regards to cyber
security and cyber security management system

UN R156 Uniform provisions concerning the approval of vehicles with regards to software
update and software updates management system

Internet Engineering Task Force (IETF)
https://www.rfc-editor.org/rfc/rfc8017

This document represents a republication of PKCS #1 v2.2 from RSA
Laboratories’ Public—Key Cryptography Standards (PKCS) series. By
publishing this RFC, change control is transferred to the IETF.

https://www.rfc-editor.org/rfc/rfc8017

i

Unify bootloader

Ul/host

https://github. com/frankie-zeng/ECUBus/releases

3 {5 e

USER_CONFIG_H
#define RX_FUN_ID (0x7FFu) /*can tp rx function ID*/
#define RX_PHY_ID (0x784u) /*can tp rx phy ID*/
#define TX_ID (0x7FOu) [*can tp tx ID*/

https://github.com/frankie-zeng/ECUBus/releases

& BE T A e %

s32k3x4_hse _fw_1.5.0_1.1.0_pb211004.bin.pink

s32k3x4_Secure_Baf 0.5.0 0.9.4 pb210708.bin.pink

=N R|cict 8 =
Value Add
{.} 0x2(
0x1 0x2(
0x5 0x2(
0x0 0x2(
0x1 0x2(
0x1 0x2(
0x0 0x2(

8 -8B
eleeeeee
oeeeee4e
ooeeeeee

C-F
91000000
eecee240
00000060

5 ®-Variables ° Breakpoints %I Expressions
\ Expression Type
v = gHseFwVersion hseAttrFwVersi...
6 reserved uintd t
®- socTypeld uintd t
0 fwTypeld uint16 t
- majorVersion uintd t
- minorVersion uintd t
- patchVersion uint16 t
== Add new expression
Problems @ Console 4 Search & Debugger Console @ Memory 2 3¢ Call Hierarct
Menitors & % % 0x4039c020 : 0x4039C020 <Hex> 2 . & New Renderings...
@ 0Ox5d4000 Address @ - 3 4 -7
¢ 0x400000 PRECIS-P] 01050000 [RCEEEEREE
¢ 0x500000 4039C030 02020002 35000000
¢ 0x4039c020 4039C040 08CEE240 GOEEO240
BE¥ e

s32k3x4_hse_fw_1.5.0_2.1.0_pb220625.bin.pink

s32k3x4_Secure_Baf_0.5.0_0.10.0_pb220428.bin.pink

1. Ft%; hsefw g_isEnableActivePassiveBlock =1, i/H[l

~

oom o

HE| &+ % %[T
Expression Type Value
v 2 gHseFwVersion hseAttrFwVersi... {..}
- reserved uint8 t Ox1
«- socTypeld uint8 t 0x5
«- fwTypeld uint16 t 0x0
«- majorVersion uint8_t Ox2
«- minorVersion uintg_t 0x1
w- patchVersion uint16_t 0x0
w- hseSrvResponse hseSrvRespons... Oxdeadbet
w- g_isEnableActivePassiveBlo uint8_t 0x0

<

% Add new expression

swap active/passive block

£ Problems = Console + Search & Debugger Console 0 Memory 2 % Call Hierarchy

vionitors @ % % [0x4039c020 : 0x4039C020 <Hex> & & New Renderings...]
¢ 0x5d4000 Address @ - 3 4-7 8 -B C-F
¢ 0x400000 se39ceze ECTIEY ocoscee3 Cleeeeee e1000000
¢ 0x500000 4939C030 00EEEPOP 35000000 0EORPO4E 0OCEO248
¢ 0x4039c020

4039Ce40 ©eCee24e 00000240 0C0CCLeRe o©eoeLeee
4@39C050 ©oeeeeeee FFFFFFBF FF3FFDBF FF3FFDBF

I

1. hse fw ¥ REJE,, clock BI¥JUE4L, hardfault

23.3.2 MC_CGM mux 0 clocks

MUX_0_DC_0[DIV]
1.8 CORE_CLK
AIPS_PLAT CLK

DIv]

|

[

MUX_0_DC_1

3

MUX_0_DC_2|

|

MUX0_0_CSC[RAMPUP] 1..16 AIPS_SLOW_CLK

MUXD_0_CSC[RAMPDOWN]
h MUX_0_DC 3[DIV] CMU_FC 5
HSE_CLK

PCFS
DIv]

ql

PLL_PHIO_CLK——

B,

FIRC_ CLK—0

PCFS_SDUR[SDUR] MUX_0_DC_4|
MUX_0_CSC[SELCTL]

B

DCM_CLK

MUX_0_DC_5

DIV]

3

LBIST_CLK Not available on:
- 832K311
DIV - §32K312

=
c

X_0_DC

=

QSPI_MEM_CLK

B}

Figure 55. MC_CGM mux 0 clocks

NOTE
The clock frequency relationship between TCK and HSE_CLK clocks for HSE_B must be a minimum ratio of 1:1.5.
For example, if HSE_CLK equals 80 MHz, then TCK must be less than or equal to 53 MHz (80 MHz + 1.5).

FIRC

CMU_FM_1

»FIRC_CLK

FIRC

=]

=

[s2]

LI
C)—kMOJ/

|
HSE_B.CONFIG_REG_GPR[FIRC_DIV_SEL]

1. The FIRC_DIV_SEL is configured by the sBAF code. 35.6.13

HSE Configuration REG_GPR (CONFIG_REG_GPR)

Field Function
31-28 FIRC Divider
APP_CORE_A NOTE
cc While writing to this register, APP_CORE_ACC 5 RO and should not be changed
from 0101,
101b - Application core can write this field [FIRC_DIV_SEL]
All other values - No access to applicafion core
28-2 Reserved
1-0 FIRC Divider
FIRC_DIV_SEL | Indicates this chip's FIRC clock division factor.
00k - Divided by 2
01b - Divided by 2
10b - Divided by 16
11b - Undivided
23.6.1.5.1 HSE_B clocking
HSE_B
HSE_CLK PLL (MODULE_CLK)
DCM_CLK DCF_clk
AIPS_SLOW_CLK HSE_B_IPS
[—- PLL standby
SIRC_CLK Slow 32k clk
Tex <] TCK
I—Da—v TCK_n
HSE_MUO
MODULE_CLK
REG_INTF_CLK
HSE_MU1
MODULE_CLK
REG_INTF_CLK
Figure 85. HSE_B clocking
. N7y
disable 4 piAXAY
C Compare Viewer £ M| 4 @
SRk Clock Ip_Cfg.c 1ERiER | generate\src\Clock Ip_Cfg.c
3R K KK 6K 6 6K K36 K6 K36 R 6 6 6 8 6 o 6o o 6 R AR 6 R 6 R R 8 6 R K K 6K K 6 K K 6 K K6
const Clock_Ip_ClockConfigType Clock_Ip_aClockConfig[1U] = { const Clock_Ip_ClockConfigType Clock_Ip_aClockConfig[1lU] = {
/*! @brief User Configuration structure clock_Cfg @ */ /*! @brief User Configuration structure clock_Cfg_ e */
¢ . ¢ .
eu, /* clkConfigId */ eu, /* clkConfigId */
(NULL_PTR), /* Register data if register value ((NULL_PTR), /* Register data if register val
1u, /* ircoscsCount */ }—{ 20, /* ircoscsCount */
2V, /* xoscsCount */ 2U, /* xoscsCount */
1u, /* pllsCount */ 1, /* pllsCount */
13U, /* selectorsCount */ 13U, /* selectorsCount */
21U, /* dividersCount */ — 22U, /* dividersCount */
1u, /* dividerTriggersCount */ 1u, /* dividerTriggersCount */
eu, /* fracDivsCount */ eu, /* fracDivsCount */
20, /* extClksCount */ 20U, /* extClksCount */
1e1u, /* gatesCount */ 101U, /* gatesCount */
eu, /* pcfsCount */ au, /* pcfsCount */
4U, /* cmusCount */ 4u, /* cmusCount */
6U, /* configureFrequenciesCount */ 6U, /* configureFrequenciesCount */

< > < >

/* IRCOSC initialization. */

#if CLOCK_IP_IRCOSCS_NO > eu
{

/* IRCOSC initialization. */

#if CLOCK_IP_IRCOSCS_NO > ouU
{

SIRC_STANDBY_CLK,

/* name */

FIRC_STANDBY_CLK,

/* name */

eu, /* Disabled in standby mode. eu, /* Disabled in standby
eu, /* Enable regulator */ eu, /* Enable regulator */
eu, /* Ircosc range */ eu, /* Ircosc range */
eu, /* Ircosc enable in VLP mode eu, /* Ircosc enable in VL
eu, /* Ircosc enable in STOP mode eu, /* Ircosc enable in ST
}s s
#endif #endif
RESERVED_CLK, /* name */ #if CLOCK_IP_IRCOSCS_NO > 1U
eu, /* enable */ {
eu, /* Enable regulator */ SIRC_STANDBY_CLK, /* name */

eu, /* Ircosc range */
P 1% Temmen e Cia Zanm maan
/* DIVIDER initialization. */

#if CLOCK_IP_DIVIDERS_NO > oU
PLL_POSTDIV_CLK, /* name */
2U, /* value */
{

eu,

}

Y,

#endif

#if CLOCK_IP_DIVIDERS_NO > 1U
PLL_PHI®_CLK, /* name */
3u, /* value */

-

S EEETE T aE o

eu, /*

Disabled in standby

Al 3

/* DIVIDER initialization. */

#if CLOCK_IP_DIVIDERS_NO > eU

FIRC_POSTDIV_CLK,
1u,
{

}
T,
#endif

eu,

#if CLOCK_IP_DIVIDERS_NO > 1U

PLL_POSTDIV_CLK,
2u,

| & nS32K312_EVB Q100 RTD201 v | # A © ESFEftES ~ [W i BOARD BootClockRUN

{7 DRUN v |Clock Development Error Detect Disabled v |Clock User Mode Support Disabled v |Clo
Clock Loops Timeout 50000 | Clock Timeout Method OSIF_ COUNTER DUMMY v | Clock Register Values Opt
| CmuNotification NULL PTR|| Enable PrepareMemoryConfig Disabled v |ClockPrepareMemoryConfig|MULL

EEiE
f=1i)
= PIER
=Fast IRC 48 MHz
FIRC under MCU control Disabled
Firc Standby Configuration =i andby m
=SIRC frequency 32 kHz
SIRC under MCU control Enabled

Sirc Standby Configuration
= MR

= FX0SC source ol
FXOSC Under Mcu Control
FXOSC Operation Mode
FXOSC Startup Delay

=SX0SC source M
SXOSC Under Mcu Control
SXOSC Operation Mode
SXOSC Startup Delay

S312 CLOCK

Sirc is disabled in standby m

16 MHz

Enabled

Osc Mode/Cr..Normal Mode
49

32.768 kHz

Enabled

Osc Mode/Cr..Normal Mode
125

https://community.nxp.com/t5/532K/HSE-PLL-configuration/m-p/1672534

Eenbla ;e laban %/

/* name */
/* value */

/* name */
/* value */

https://community.nxp.com/t5/S32K/HSE-PLL-configuration/m-p/1672534

a month ago - 236 Views

B lukaszadrapa
NXP TechSupport

Hi @DGB

| just got new information. This configuration of HSE_CLK_MODE in DCF record (and also configuration of FXOSC)
has no effect unless PLL_ENABLE in IVT is enabled. SBAF will ignore it and FIRC will be used at boot time. And
PLL_ENABLE has effect only when BOOT_SEQ is 1 (i.e. secure boot enabled).

I'm sorry, | provided wrong information in previous post. The documentation is little bit confusing here, | will ask to
clarify it.

Based on HSE_CLK_MODE_OPTION (if PLL_ENABLE Is set), SBAF configures MUX_0 DC_1 and MUX_0_DC_2

dividers. If PLL_ENABLE is not used, it's up to user to configuré these dividers later in the code. So, we are getting
back to Table 144 in the S32K3 RM Could you send me your clock configuration? Is it the same as in Table 1447
Regards,

Lukas

2. HSE f# 885, PE multilink ANEE#E application FIER

YR 222) [E A full mem 2% ab_swap &FE%F N[FLASH algorithm

o . l e 7
e A

2
Advanced

nality may not be available.

Flash Algorithm Selection

Name: $32K344 172 LED 100 Debug FLASH PNE |

| Main & PEmicro Debugger . » Startup % Source

hen programming flash data:
nxp_s32k344_1x32x936k ab_swap. v

Non-Volatile Memory Preservation

Data that reside in a
+ FLASH_PNE ~

TET e
+ RAM PNE pttvace Beghitatiod [l Use Alternative Algorithm Browse . s:::‘e:r:i:’al';g: of
FLASH PNE N Please register your software to remove this mi maintained through
?Lrg: NPENE 2 Registecoon Initialization Script Selection ;:’I;ee/; pv';,)l?:}aemr:::l:s;
'.RAM I;NE PEMicro Interface Settings Specify a .mac script to run after to match the row size
= Interface: |USB MuRlink, USE MGk FX, Embd onnecting to the device. of the memory.

’ [) Enable initialization script TPl [Teras (Momory Fane)

Port:
From: 0 To: 3

Select Device Vendor: NXP Family: S32K3xx Browse.. Variables...
["] Preserve this range (Memory Range 1)
Core: M7 v JTAG Daisy Chain Settings

From: 0 To: 3
Use Daisy Ct 1] {
Specify IP Specify Network Card se Daisy Chain ustrat‘lon D Preserve this range (Memmory Range 2)
FW0110_Debug Fl Additional Options Tap Number: 0 Pre-IR Bits: 0 trome 0 To:'3
- - - o ig Device Recove Full Chip Er i
W0110_Debug FL/ : 1y b pEtase Options
0341 FWO110 De Advanced Options Erase Module (Erases All Data)
:’22110;3/901’1‘;90.;13 lace Power Control (Voltage --> Powe! Program Trim Registers
= = ProVide power to target Regulator Oufl cajculate Trim and Program the Non-Volatile Trim Register
[] Power off target upon software exit 2V Default trim reference frequency is: 0.0 Hz (Valid Range: 0.0 to 0.0 Hz)
Target Communication Speed Use custom trim reference frequency: 0.0 Hz
Debug Shift Freq (KHz) 5000 Program Partition
Delay after reset and before communicating to tan T Partition [13:12] = EEESPLIT, Partition[11:8] = EEESIZE |
v O y g Enable Partitioning for the device 0 Partition(7:4] =4'b0000, Partition[3:0] = DEPART
> Preserve Partitioning for the device EEPROM data set size must be within 0x00..0x00

FlexNVM partition code must be within 0x00..0x00

v

3. hse BEHIIMIRIERBRFHZEEER non-cache X

W, wTHE

lock_Ip_Specific.c (RTDVsrc) Crylf.c (RTDVsrc)

CeyProvision.c
Symbol Name (Alt+1

& ifdef _cplusplus

@ endif

include "Cryptoh”

& include "Hse_lp.h"

@ include “Oslfh"

il App_SetSuccessStatus

App_GetSuccessStatus

KEY_MATERIAL_ELEMENT ID_U32

@ FOTA_Authenticate_PubKey N

@ FOTA_Authenticate PrivKey D

@ FOTA_Authenticate_PubKey_Exp

@ FOTA_Decrypt_AesCtrey

@ u32NumFailedKeyProvisionApiCalls

CRYPTO_START_SEC_VAR_CLEARED_UNSPECIH
& include "Crypto_MemMap.h"

@ Hse_Keylnfo

CRYPTO_STOP_SEC_VAR_CLEARED_UNSPECIF
& include "Crypto_MemMap.h"

CRYPTO_START_SEC_VAR_SHARED_CLEARED._
& include "Crypto_MemMap.h"

CRYPTO STOP SEC VAR SHARED_CLEARED L
& include "Crypto_MemMap.h"

2 LoadRsaKeyPair

2] LoadRsaKeyPair

Zl Demo_KeyProvisioning

@ ifdef _cplusplus

& endif

Crypto.c (RTD\src) Crypto_ASRExtension.c (RTD\src) Crypto_Hse.c (RTD\src) Crypto_KeyManagement.c (RTD\src)

/*
* LOCAL VARIABLES

/* variable to store number of Failed Key Provisioning Api calls */
static velatile uint32 u32nNumFailedkeyProvisionapicalls = eu;

/* The variables in the section below need to be put in non-cacheable memory area in order to be col
#define CRYPTO_START_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE
#include “"Crypto_MemMap.h"”

/* variable where HSE key information is stored */
static hsekeyInfo_t Hse_KeyInfo;

#define CRYPTO_STOP_SEC_VAR_CLEARED_UNSPECIFIED_NO_CACHEABLE
#include “Crypto_MemMap.h”

#define CRYPTO_START_SEC_VAR_SHARED_CLEARED_UNSPECIFIED_NO_CACHEABLE
#include "Crypto_MemMap.h"

/* variable used to store the descriptor containing the service request for HSE firmware. This exam|
that the application execution will not continue until the response from Hse is received or a timeol
the same descriptor for requests sent to HSE.

The descriptor should be placed in the shared memory, in a non-cacheable area */
static hseSrvDescriptor t se_SrvDescriptorf

#define CRYPTO_STOP_SEC_VAR_SHARED_CLEARED_UNSPECIFIED_NO_CACHEABLE
#include "Crypto_MemMap.h"

* GLOBAL CONSTANTS

VEAN 2% B 4] 5805 demo S32K344_HSE_OTA.7z.

4. Hse M) demo #B&ZAH H dtcm memory

Huhik & 0x21001000 iX /& T44 % &2

,»» nocache 1R

5. Hse KJ demo #EEFERKE ivt, UG rom

M exee402000 4, 1HZREHE app

IVT BIN,,, T32 ki

,» s HRITI R AR E 4020007 ?

6. hse IR B 1 data flash , MFAAH W2

2 smr , CREntry ,, W& 2

JHH erase HSE NVM k%% HSE_SRV_ID_ERASE_HSE_NVM_DATA

7. EBEE VT HRL, fw BB RE,

PR AR T LA

SR I7vE U HSE A RE R AE 0x400000 HIAEE, S 75id T B A B 1E

ATEE,, LN sbaf G %%

-y 2 \Va |

VER HSE_FW_ADDR [link file 355 HSE_BINARY HihibxiRi, FHIEN: sbaf HHIE%

dE
%

AL, ATRERE S R (PEmutilink H8 T4 H A5 SCHH B X 480 /£ 0x500000 Ji
THEKivt,, 38 sbaf ASiH %1 0x400000
FEIL

IHH 312 AR ivt 17 E 0x500000 ,, 0x10000000 HHH[256 byte #54H.
https://community.nxp.com/t5/532K/S32K312-The-HSE-FW-fails-to-be-installed/m-

p/1659214/emcs_t/S2h8ZW1haWx8bWVudGlvbl9zdWJzY3JpcHRpb258TEK4V1RIQINDQzBQWDF
8MTY10TIXNHxBVFOSNRU5USUSOU3xoSw#M23369

